Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288436645> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4288436645 endingPage "21117" @default.
- W4288436645 startingPage "21101" @default.
- W4288436645 abstract "Abstract Cross-drainage hydraulic structures such as culverts and bridges in urban landscapes are prone to get blocked by the transported debris (e.g., urban, vegetated), which often reduces their hydraulic capacity and triggers flash floods. Unavailability of relevant data from blockage-originated flooding events and complex nature of debris accumulation are highlighted factors hindering the research within the blockage management domain. Wollongong City Council (WCC) blockage conduit policy is the leading formal guidelines to incorporate blockage into design guidelines; however, are criticized by the hydraulic engineers for its dependence on the post-flood visual inspections (i.e., visual blockage) instead of peak floods hydraulic investigations (i.e., hydraulic blockage). Apparently, no quantifiable relationship is reported between the visual blockage and hydraulic blockage; therefore, many consider WCC blockage guidelines invalid. This paper exploits the power of Artificial Intelligence (AI), motivated by its recent success, and attempts to relate visual blockage with hydraulic blockage by proposing a deep learning pipeline to predict hydraulic blockage from an image of the culvert. Two experiments are performed where the conventional pipeline and end-to-end learning approaches are implemented and compared in the context of predicting hydraulic blockage from a single image. In experiment one, the conventional deep learning pipeline approach (i.e., feature extraction using CNN and regression using ANN) is adopted. In contrast, in experiment two, end-to-end deep learning models (i.e., E2E_ MobileNet, E2E_ BlockageNet) are trained and compared with the conventional pipeline approach. Dataset (i.e., Hydraulics-Lab Blockage Dataset (HBD), Visual Hydraulics-Lab Dataset (VHD)) used in this research were collected from laboratory experiments performed using scaled physical models of culverts. E2E_ BlockageNet model was reported best in predicting hydraulic blockage with $$R^2$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mi>R</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:math> score of 0.91 and indicated that hydraulic blockage could be interrelated with the visual features at the culvert." @default.
- W4288436645 created "2022-07-29" @default.
- W4288436645 creator A5000987902 @default.
- W4288436645 creator A5038130073 @default.
- W4288436645 creator A5047284171 @default.
- W4288436645 date "2022-07-28" @default.
- W4288436645 modified "2023-10-16" @default.
- W4288436645 title "Prediction of hydraulic blockage at culverts from a single image using deep learning" @default.
- W4288436645 cites W1968836297 @default.
- W4288436645 cites W1985446071 @default.
- W4288436645 cites W2028070629 @default.
- W4288436645 cites W2049604804 @default.
- W4288436645 cites W2062848325 @default.
- W4288436645 cites W2079016033 @default.
- W4288436645 cites W2091426633 @default.
- W4288436645 cites W2093090592 @default.
- W4288436645 cites W2108598243 @default.
- W4288436645 cites W2194775991 @default.
- W4288436645 cites W2218043766 @default.
- W4288436645 cites W2319985434 @default.
- W4288436645 cites W2338241561 @default.
- W4288436645 cites W2428586350 @default.
- W4288436645 cites W2475415083 @default.
- W4288436645 cites W2565739165 @default.
- W4288436645 cites W2577234833 @default.
- W4288436645 cites W2752322585 @default.
- W4288436645 cites W2807387339 @default.
- W4288436645 cites W2942806183 @default.
- W4288436645 cites W2996139122 @default.
- W4288436645 cites W3010400125 @default.
- W4288436645 cites W3024940778 @default.
- W4288436645 cites W3034408619 @default.
- W4288436645 cites W3110531600 @default.
- W4288436645 cites W3110884034 @default.
- W4288436645 cites W3118443085 @default.
- W4288436645 cites W3143905936 @default.
- W4288436645 cites W3194277736 @default.
- W4288436645 cites W3211963113 @default.
- W4288436645 doi "https://doi.org/10.1007/s00521-022-07593-8" @default.
- W4288436645 hasPublicationYear "2022" @default.
- W4288436645 type Work @default.
- W4288436645 citedByCount "4" @default.
- W4288436645 countsByYear W42884366452022 @default.
- W4288436645 countsByYear W42884366452023 @default.
- W4288436645 crossrefType "journal-article" @default.
- W4288436645 hasAuthorship W4288436645A5000987902 @default.
- W4288436645 hasAuthorship W4288436645A5038130073 @default.
- W4288436645 hasAuthorship W4288436645A5047284171 @default.
- W4288436645 hasBestOaLocation W42884366451 @default.
- W4288436645 hasConcept C108583219 @default.
- W4288436645 hasConcept C123700513 @default.
- W4288436645 hasConcept C127313418 @default.
- W4288436645 hasConcept C127413603 @default.
- W4288436645 hasConcept C146978453 @default.
- W4288436645 hasConcept C151730666 @default.
- W4288436645 hasConcept C154945302 @default.
- W4288436645 hasConcept C169961344 @default.
- W4288436645 hasConcept C187320778 @default.
- W4288436645 hasConcept C199360897 @default.
- W4288436645 hasConcept C2779343474 @default.
- W4288436645 hasConcept C39432304 @default.
- W4288436645 hasConcept C41008148 @default.
- W4288436645 hasConcept C43521106 @default.
- W4288436645 hasConceptScore W4288436645C108583219 @default.
- W4288436645 hasConceptScore W4288436645C123700513 @default.
- W4288436645 hasConceptScore W4288436645C127313418 @default.
- W4288436645 hasConceptScore W4288436645C127413603 @default.
- W4288436645 hasConceptScore W4288436645C146978453 @default.
- W4288436645 hasConceptScore W4288436645C151730666 @default.
- W4288436645 hasConceptScore W4288436645C154945302 @default.
- W4288436645 hasConceptScore W4288436645C169961344 @default.
- W4288436645 hasConceptScore W4288436645C187320778 @default.
- W4288436645 hasConceptScore W4288436645C199360897 @default.
- W4288436645 hasConceptScore W4288436645C2779343474 @default.
- W4288436645 hasConceptScore W4288436645C39432304 @default.
- W4288436645 hasConceptScore W4288436645C41008148 @default.
- W4288436645 hasConceptScore W4288436645C43521106 @default.
- W4288436645 hasFunder F4320320969 @default.
- W4288436645 hasIssue "23" @default.
- W4288436645 hasLocation W42884366451 @default.
- W4288436645 hasOpenAccess W4288436645 @default.
- W4288436645 hasPrimaryLocation W42884366451 @default.
- W4288436645 hasRelatedWork W1986166116 @default.
- W4288436645 hasRelatedWork W2047444513 @default.
- W4288436645 hasRelatedWork W2121416174 @default.
- W4288436645 hasRelatedWork W2731899572 @default.
- W4288436645 hasRelatedWork W2899084033 @default.
- W4288436645 hasRelatedWork W3025626553 @default.
- W4288436645 hasRelatedWork W3090132503 @default.
- W4288436645 hasRelatedWork W3215138031 @default.
- W4288436645 hasRelatedWork W4286783850 @default.
- W4288436645 hasRelatedWork W628828930 @default.
- W4288436645 hasVolume "34" @default.
- W4288436645 isParatext "false" @default.
- W4288436645 isRetracted "false" @default.
- W4288436645 workType "article" @default.