Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288447615> ?p ?o ?g. }
- W4288447615 abstract "Abstract Data accurately representing the population distribution at the subnational level within countries is critical to policy and decision makers for many applications. Call data records (CDRs) have shown great promise for this, providing much higher temporal and spatial resolutions compared to traditional data sources. For CDRs to be integrated with other data and in order to effectively inform and support policy and decision making, mobile phone user must be distributed from the cell tower level into administrative units. This can be done in different ways and it is often not considered which method produces the best representation of the underlying population distribution. Using anonymised CDRs in Namibia between 2011 and 2013, four distribution methods were assessed at multiple administrative unit levels. Estimates of user density per administrative unit were ranked for each method and compared against the corresponding census-derived population densities, using Kendall’s tau-b rank tests. Seasonal and trend decomposition using Loess (STL) and multivariate clustering was subsequently used to identify patterns of seasonal user variation and investigate how different distribution methods can impact these. Results show that the accuracy of the results of each distribution method is influenced by the considered administrative unit level. While marginal differences between methods are displayed at “coarser” level 1, the use of mobile phone tower ranges provided the most accurate results for Namibia at finer levels 2 and 3. The use of STL is helpful to recognise the impact of the underlying distribution methods on further analysis, with the degree of consensus between methods decreasing as spatial scale increases. Multivariate clustering delivers valuable insights into which units share a similar seasonal user behaviour. The higher the number of prescribed clusters, the more the results obtained using different distribution methods differ. However, two major seasonal patterns were identified across all distribution methods, levels and most cluster numbers: (a) units with a 15% user decrease in August and (b) units with a 20–30% user increase in December. Both patterns are likely to be partially linked to school holidays and people going on vacation and/or visiting relatives and friends. This study highlights the need and importance of investigating CDRs in detail before conducting subsequent analysis like seasonal and trend decomposition. In particular, CDRs need to be investigated both in terms of their area and population coverage, as well as in relation to the appropriate distribution method to use based on the spatial scale of the specific application. The use of inappropriate methods can change observed seasonal patterns and impact the derived conclusions." @default.
- W4288447615 created "2022-07-29" @default.
- W4288447615 creator A5003329565 @default.
- W4288447615 creator A5015853632 @default.
- W4288447615 creator A5016636311 @default.
- W4288447615 creator A5017422889 @default.
- W4288447615 creator A5026395399 @default.
- W4288447615 creator A5043495051 @default.
- W4288447615 creator A5045460459 @default.
- W4288447615 creator A5056952143 @default.
- W4288447615 creator A5066014196 @default.
- W4288447615 creator A5069001048 @default.
- W4288447615 creator A5071210392 @default.
- W4288447615 creator A5082817356 @default.
- W4288447615 date "2022-07-28" @default.
- W4288447615 modified "2023-10-18" @default.
- W4288447615 title "Exploring methods for mapping seasonal population changes using mobile phone data" @default.
- W4288447615 cites W1433483747 @default.
- W4288447615 cites W1530419379 @default.
- W4288447615 cites W1898744853 @default.
- W4288447615 cites W1982300822 @default.
- W4288447615 cites W1994273294 @default.
- W4288447615 cites W1998542065 @default.
- W4288447615 cites W2048281588 @default.
- W4288447615 cites W2051775373 @default.
- W4288447615 cites W2052458288 @default.
- W4288447615 cites W2054448337 @default.
- W4288447615 cites W2055887948 @default.
- W4288447615 cites W2055992762 @default.
- W4288447615 cites W2057442840 @default.
- W4288447615 cites W2062377454 @default.
- W4288447615 cites W2097699073 @default.
- W4288447615 cites W2163223516 @default.
- W4288447615 cites W2255845836 @default.
- W4288447615 cites W2296325723 @default.
- W4288447615 cites W2297198091 @default.
- W4288447615 cites W2319284762 @default.
- W4288447615 cites W2342734824 @default.
- W4288447615 cites W2345352344 @default.
- W4288447615 cites W2530090019 @default.
- W4288447615 cites W2543910789 @default.
- W4288447615 cites W2556289220 @default.
- W4288447615 cites W2561187965 @default.
- W4288447615 cites W2583949569 @default.
- W4288447615 cites W2653311480 @default.
- W4288447615 cites W2788280056 @default.
- W4288447615 cites W2795572832 @default.
- W4288447615 cites W2804185856 @default.
- W4288447615 cites W2883454251 @default.
- W4288447615 cites W2891277827 @default.
- W4288447615 cites W2894620590 @default.
- W4288447615 cites W2911964244 @default.
- W4288447615 cites W2920135474 @default.
- W4288447615 cites W2921244893 @default.
- W4288447615 cites W2923311191 @default.
- W4288447615 cites W2939490628 @default.
- W4288447615 cites W2943910359 @default.
- W4288447615 cites W2949214535 @default.
- W4288447615 cites W2962901729 @default.
- W4288447615 cites W2972707075 @default.
- W4288447615 cites W3003631558 @default.
- W4288447615 cites W3005118804 @default.
- W4288447615 cites W3022210384 @default.
- W4288447615 cites W3040621387 @default.
- W4288447615 cites W3042348109 @default.
- W4288447615 cites W3085901218 @default.
- W4288447615 cites W3102205829 @default.
- W4288447615 cites W976226029 @default.
- W4288447615 doi "https://doi.org/10.1057/s41599-022-01256-8" @default.
- W4288447615 hasPublicationYear "2022" @default.
- W4288447615 type Work @default.
- W4288447615 citedByCount "3" @default.
- W4288447615 countsByYear W42884476152022 @default.
- W4288447615 countsByYear W42884476152023 @default.
- W4288447615 crossrefType "journal-article" @default.
- W4288447615 hasAuthorship W4288447615A5003329565 @default.
- W4288447615 hasAuthorship W4288447615A5015853632 @default.
- W4288447615 hasAuthorship W4288447615A5016636311 @default.
- W4288447615 hasAuthorship W4288447615A5017422889 @default.
- W4288447615 hasAuthorship W4288447615A5026395399 @default.
- W4288447615 hasAuthorship W4288447615A5043495051 @default.
- W4288447615 hasAuthorship W4288447615A5045460459 @default.
- W4288447615 hasAuthorship W4288447615A5056952143 @default.
- W4288447615 hasAuthorship W4288447615A5066014196 @default.
- W4288447615 hasAuthorship W4288447615A5069001048 @default.
- W4288447615 hasAuthorship W4288447615A5071210392 @default.
- W4288447615 hasAuthorship W4288447615A5082817356 @default.
- W4288447615 hasBestOaLocation W42884476151 @default.
- W4288447615 hasConcept C105795698 @default.
- W4288447615 hasConcept C110121322 @default.
- W4288447615 hasConcept C122637931 @default.
- W4288447615 hasConcept C124101348 @default.
- W4288447615 hasConcept C134306372 @default.
- W4288447615 hasConcept C144024400 @default.
- W4288447615 hasConcept C145420912 @default.
- W4288447615 hasConcept C149782125 @default.
- W4288447615 hasConcept C149923435 @default.
- W4288447615 hasConcept C205649164 @default.
- W4288447615 hasConcept C2777421447 @default.
- W4288447615 hasConcept C2908647359 @default.