Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288494489> ?p ?o ?g. }
- W4288494489 abstract "Exploratory factor analysis (EFA) finds its place in many scientific fields. With this analysis, information about the nature and structure of the measured feature can be obtained. It is possible to have information about the nature of the measured feature by fulfilling the requirements of this analysis. Correctly deciding on the number of dimensions in EFA can also be challenging for researchers. For this reason, this study presents information on the theoretical background of the factor retention methods used when deciding on the number of dimensions in EFA. In addition, it has been given information about which software is available for these methods. Moreover, there is information about which method gives more accurate results in the simulation studies. As a result, the number of dimensions can be decided by using traditional methods such as optimal parallel analysis, comparative data, or the average of partial correlations, as well as making use of machine learning methods (random forest or extreme gradient augmentation), which have found new uses in the literature, to researchers who will perform EFA." @default.
- W4288494489 created "2022-07-29" @default.
- W4288494489 creator A5025747853 @default.
- W4288494489 date "2022-04-11" @default.
- W4288494489 modified "2023-10-16" @default.
- W4288494489 title "Deciding The Number Of Dimensions In Explanatory Factor Analysis: A Brief Overview Of The Methods" @default.
- W4288494489 cites W1681695349 @default.
- W4288494489 cites W1697663338 @default.
- W4288494489 cites W1931276471 @default.
- W4288494489 cites W1964218847 @default.
- W4288494489 cites W1977182891 @default.
- W4288494489 cites W1977775666 @default.
- W4288494489 cites W1987634243 @default.
- W4288494489 cites W1999603595 @default.
- W4288494489 cites W2024046085 @default.
- W4288494489 cites W2041963641 @default.
- W4288494489 cites W2044946104 @default.
- W4288494489 cites W2051407775 @default.
- W4288494489 cites W2061540482 @default.
- W4288494489 cites W2079542530 @default.
- W4288494489 cites W2087329389 @default.
- W4288494489 cites W2088477804 @default.
- W4288494489 cites W2093636276 @default.
- W4288494489 cites W2094102654 @default.
- W4288494489 cites W2100515418 @default.
- W4288494489 cites W2101346800 @default.
- W4288494489 cites W2117197890 @default.
- W4288494489 cites W2124563089 @default.
- W4288494489 cites W2133097426 @default.
- W4288494489 cites W2147509794 @default.
- W4288494489 cites W2151097131 @default.
- W4288494489 cites W2159466611 @default.
- W4288494489 cites W2160172778 @default.
- W4288494489 cites W2222174245 @default.
- W4288494489 cites W2314669497 @default.
- W4288494489 cites W2391304757 @default.
- W4288494489 cites W2479854562 @default.
- W4288494489 cites W2481704025 @default.
- W4288494489 cites W2494048167 @default.
- W4288494489 cites W2911964244 @default.
- W4288494489 cites W2912042451 @default.
- W4288494489 cites W2953470884 @default.
- W4288494489 cites W2965957210 @default.
- W4288494489 cites W2996565989 @default.
- W4288494489 cites W3009705786 @default.
- W4288494489 cites W3012407112 @default.
- W4288494489 cites W3024187289 @default.
- W4288494489 cites W3087099932 @default.
- W4288494489 cites W3102027041 @default.
- W4288494489 cites W3119084871 @default.
- W4288494489 cites W3120209212 @default.
- W4288494489 cites W3145401339 @default.
- W4288494489 cites W3159392444 @default.
- W4288494489 cites W3214493107 @default.
- W4288494489 cites W4200198432 @default.
- W4288494489 cites W4200478052 @default.
- W4288494489 cites W4233660774 @default.
- W4288494489 cites W4244727223 @default.
- W4288494489 cites W4250915179 @default.
- W4288494489 cites W62989984 @default.
- W4288494489 doi "https://doi.org/10.30794/pausbed.1095936" @default.
- W4288494489 hasPublicationYear "2022" @default.
- W4288494489 type Work @default.
- W4288494489 citedByCount "0" @default.
- W4288494489 crossrefType "journal-article" @default.
- W4288494489 hasAuthorship W4288494489A5025747853 @default.
- W4288494489 hasBestOaLocation W42884944892 @default.
- W4288494489 hasConcept C119857082 @default.
- W4288494489 hasConcept C124101348 @default.
- W4288494489 hasConcept C138885662 @default.
- W4288494489 hasConcept C154945302 @default.
- W4288494489 hasConcept C165957694 @default.
- W4288494489 hasConcept C199360897 @default.
- W4288494489 hasConcept C2522767166 @default.
- W4288494489 hasConcept C2776401178 @default.
- W4288494489 hasConcept C2781039887 @default.
- W4288494489 hasConcept C3018260909 @default.
- W4288494489 hasConcept C41008148 @default.
- W4288494489 hasConcept C41895202 @default.
- W4288494489 hasConcept C71104824 @default.
- W4288494489 hasConceptScore W4288494489C119857082 @default.
- W4288494489 hasConceptScore W4288494489C124101348 @default.
- W4288494489 hasConceptScore W4288494489C138885662 @default.
- W4288494489 hasConceptScore W4288494489C154945302 @default.
- W4288494489 hasConceptScore W4288494489C165957694 @default.
- W4288494489 hasConceptScore W4288494489C199360897 @default.
- W4288494489 hasConceptScore W4288494489C2522767166 @default.
- W4288494489 hasConceptScore W4288494489C2776401178 @default.
- W4288494489 hasConceptScore W4288494489C2781039887 @default.
- W4288494489 hasConceptScore W4288494489C3018260909 @default.
- W4288494489 hasConceptScore W4288494489C41008148 @default.
- W4288494489 hasConceptScore W4288494489C41895202 @default.
- W4288494489 hasConceptScore W4288494489C71104824 @default.
- W4288494489 hasLocation W42884944891 @default.
- W4288494489 hasLocation W42884944892 @default.
- W4288494489 hasOpenAccess W4288494489 @default.
- W4288494489 hasPrimaryLocation W42884944891 @default.
- W4288494489 hasRelatedWork W1801986586 @default.
- W4288494489 hasRelatedWork W1997919949 @default.
- W4288494489 hasRelatedWork W2152487972 @default.