Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288498497> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4288498497 abstract "Conventional uncertainty quantification methods usually lacks the capability of dealing with high-dimensional problems due to the curse of dimensionality. This paper presents a semi-supervised learning framework for dimension reduction and reliability analysis. An autoencoder is first adopted for mapping the high-dimensional space into a low-dimensional latent space, which contains a distinguishable failure surface. Then a deep feedforward neural network (DFN) is utilized to learn the mapping relationship and reconstruct the latent space, while the Gaussian process (GP) modeling technique is used to build the surrogate model of the transformed limit state function. During the training process of the DFN, the discrepancy between the actual and reconstructed latent space is minimized through semi-supervised learning for ensuring the accuracy. Both labeled and unlabeled samples are utilized for defining the loss function of the DFN. Evolutionary algorithm is adopted to train the DFN, then the Monte Carlo simulation method is used for uncertainty quantification and reliability analysis based on the proposed framework. The effectiveness is demonstrated through a mathematical example." @default.
- W4288498497 created "2022-07-29" @default.
- W4288498497 creator A5048675051 @default.
- W4288498497 creator A5077972623 @default.
- W4288498497 date "2020-06-01" @default.
- W4288498497 modified "2023-09-29" @default.
- W4288498497 title "Semi-supervised deep learning for high-dimensional uncertainty quantification" @default.
- W4288498497 doi "https://doi.org/10.48550/arxiv.2006.01010" @default.
- W4288498497 hasPublicationYear "2020" @default.
- W4288498497 type Work @default.
- W4288498497 citedByCount "0" @default.
- W4288498497 crossrefType "posted-content" @default.
- W4288498497 hasAuthorship W4288498497A5048675051 @default.
- W4288498497 hasAuthorship W4288498497A5077972623 @default.
- W4288498497 hasBestOaLocation W42884984971 @default.
- W4288498497 hasConcept C101738243 @default.
- W4288498497 hasConcept C108583219 @default.
- W4288498497 hasConcept C111030470 @default.
- W4288498497 hasConcept C111919701 @default.
- W4288498497 hasConcept C119857082 @default.
- W4288498497 hasConcept C121332964 @default.
- W4288498497 hasConcept C131675550 @default.
- W4288498497 hasConcept C136389625 @default.
- W4288498497 hasConcept C154945302 @default.
- W4288498497 hasConcept C163258240 @default.
- W4288498497 hasConcept C163716315 @default.
- W4288498497 hasConcept C32230216 @default.
- W4288498497 hasConcept C41008148 @default.
- W4288498497 hasConcept C43214815 @default.
- W4288498497 hasConcept C50644808 @default.
- W4288498497 hasConcept C61326573 @default.
- W4288498497 hasConcept C62520636 @default.
- W4288498497 hasConcept C70518039 @default.
- W4288498497 hasConcept C98045186 @default.
- W4288498497 hasConceptScore W4288498497C101738243 @default.
- W4288498497 hasConceptScore W4288498497C108583219 @default.
- W4288498497 hasConceptScore W4288498497C111030470 @default.
- W4288498497 hasConceptScore W4288498497C111919701 @default.
- W4288498497 hasConceptScore W4288498497C119857082 @default.
- W4288498497 hasConceptScore W4288498497C121332964 @default.
- W4288498497 hasConceptScore W4288498497C131675550 @default.
- W4288498497 hasConceptScore W4288498497C136389625 @default.
- W4288498497 hasConceptScore W4288498497C154945302 @default.
- W4288498497 hasConceptScore W4288498497C163258240 @default.
- W4288498497 hasConceptScore W4288498497C163716315 @default.
- W4288498497 hasConceptScore W4288498497C32230216 @default.
- W4288498497 hasConceptScore W4288498497C41008148 @default.
- W4288498497 hasConceptScore W4288498497C43214815 @default.
- W4288498497 hasConceptScore W4288498497C50644808 @default.
- W4288498497 hasConceptScore W4288498497C61326573 @default.
- W4288498497 hasConceptScore W4288498497C62520636 @default.
- W4288498497 hasConceptScore W4288498497C70518039 @default.
- W4288498497 hasConceptScore W4288498497C98045186 @default.
- W4288498497 hasLocation W42884984971 @default.
- W4288498497 hasOpenAccess W4288498497 @default.
- W4288498497 hasPrimaryLocation W42884984971 @default.
- W4288498497 hasRelatedWork W11553578 @default.
- W4288498497 hasRelatedWork W14471487 @default.
- W4288498497 hasRelatedWork W3491078 @default.
- W4288498497 hasRelatedWork W3938471 @default.
- W4288498497 hasRelatedWork W4085024 @default.
- W4288498497 hasRelatedWork W6057950 @default.
- W4288498497 hasRelatedWork W8021486 @default.
- W4288498497 hasRelatedWork W8718456 @default.
- W4288498497 hasRelatedWork W8821115 @default.
- W4288498497 hasRelatedWork W9321062 @default.
- W4288498497 isParatext "false" @default.
- W4288498497 isRetracted "false" @default.
- W4288498497 workType "article" @default.