Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288555506> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4288555506 abstract "Let $M$ be a complete connected Riemannian manifold of finite volume. In this paper we present a new method of constructing classes in bounded cohomology of transformation groups such as $Homeo_0(M,mu)$, $Diff_0(M,vol)$ and $Symp_0(M,omega)$ (in case $M$ is symplectic). As an application we show that, under certain conditions on $pi_1(M)$, the $3^{rd}$ bounded cohomology of these groups is infinite dimensional." @default.
- W4288555506 created "2022-07-29" @default.
- W4288555506 creator A5034952143 @default.
- W4288555506 creator A5050286707 @default.
- W4288555506 date "2019-02-28" @default.
- W4288555506 modified "2023-09-23" @default.
- W4288555506 title "Bounded cohomology of transformation groups" @default.
- W4288555506 doi "https://doi.org/10.48550/arxiv.1902.11067" @default.
- W4288555506 hasPublicationYear "2019" @default.
- W4288555506 type Work @default.
- W4288555506 citedByCount "0" @default.
- W4288555506 crossrefType "posted-content" @default.
- W4288555506 hasAuthorship W4288555506A5034952143 @default.
- W4288555506 hasAuthorship W4288555506A5050286707 @default.
- W4288555506 hasBestOaLocation W42885555061 @default.
- W4288555506 hasConcept C104317684 @default.
- W4288555506 hasConcept C127413603 @default.
- W4288555506 hasConcept C134306372 @default.
- W4288555506 hasConcept C168619227 @default.
- W4288555506 hasConcept C185592680 @default.
- W4288555506 hasConcept C202444582 @default.
- W4288555506 hasConcept C204241405 @default.
- W4288555506 hasConcept C2779593128 @default.
- W4288555506 hasConcept C2993626508 @default.
- W4288555506 hasConcept C33923547 @default.
- W4288555506 hasConcept C34388435 @default.
- W4288555506 hasConcept C529865628 @default.
- W4288555506 hasConcept C55493867 @default.
- W4288555506 hasConcept C68365058 @default.
- W4288555506 hasConcept C72738302 @default.
- W4288555506 hasConcept C78519656 @default.
- W4288555506 hasConcept C78606066 @default.
- W4288555506 hasConceptScore W4288555506C104317684 @default.
- W4288555506 hasConceptScore W4288555506C127413603 @default.
- W4288555506 hasConceptScore W4288555506C134306372 @default.
- W4288555506 hasConceptScore W4288555506C168619227 @default.
- W4288555506 hasConceptScore W4288555506C185592680 @default.
- W4288555506 hasConceptScore W4288555506C202444582 @default.
- W4288555506 hasConceptScore W4288555506C204241405 @default.
- W4288555506 hasConceptScore W4288555506C2779593128 @default.
- W4288555506 hasConceptScore W4288555506C2993626508 @default.
- W4288555506 hasConceptScore W4288555506C33923547 @default.
- W4288555506 hasConceptScore W4288555506C34388435 @default.
- W4288555506 hasConceptScore W4288555506C529865628 @default.
- W4288555506 hasConceptScore W4288555506C55493867 @default.
- W4288555506 hasConceptScore W4288555506C68365058 @default.
- W4288555506 hasConceptScore W4288555506C72738302 @default.
- W4288555506 hasConceptScore W4288555506C78519656 @default.
- W4288555506 hasConceptScore W4288555506C78606066 @default.
- W4288555506 hasLocation W42885555061 @default.
- W4288555506 hasOpenAccess W4288555506 @default.
- W4288555506 hasPrimaryLocation W42885555061 @default.
- W4288555506 hasRelatedWork W1978704164 @default.
- W4288555506 hasRelatedWork W1995623237 @default.
- W4288555506 hasRelatedWork W2033551000 @default.
- W4288555506 hasRelatedWork W2327093272 @default.
- W4288555506 hasRelatedWork W2915823471 @default.
- W4288555506 hasRelatedWork W2950282797 @default.
- W4288555506 hasRelatedWork W2964002890 @default.
- W4288555506 hasRelatedWork W4288555506 @default.
- W4288555506 hasRelatedWork W4294436512 @default.
- W4288555506 hasRelatedWork W4296899415 @default.
- W4288555506 isParatext "false" @default.
- W4288555506 isRetracted "false" @default.
- W4288555506 workType "article" @default.