Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288679912> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4288679912 endingPage "9401" @default.
- W4288679912 startingPage "9392" @default.
- W4288679912 abstract "International Electrotechnical Commission (IEC) proposed the IEC three-ratio method based on Dissolved Gas Analysis (DGA), which is one of the most effective tools for Power Transformer Fault Diagnosis (PTFD). However, the PTFD accuracy is generally limited because the classification boundary could be too stiff to classify samples located near the boundary. The Support Vector Machine (SVM) was applied to PTFD to improve diagnosis accuracy, while traditional SVM multi-classification methods and parameter optimization algorithms are subject to poor training efficiency. As a result, the SVM-based PTFD model is difficult to update frequently with the accumulation of fault data. A new SVM-based PTFD decision framework is proposed in this paper which can significantly boost the training efficiency and ensure the accuracy. In the proposed framework, a multi-step feature extraction process consisting of characteristic gas concentration and its ratios is applied. Based on the feature distribution of various samples, a proper SVM multi-classification method is presented using a hierarchical decision tree structure. In addition, according to the principles of SVM and radial basis kernel function, a Support Vector feature-based parameter optimization algorithm (SVFB) is proposed. IEC TC 10 data and the historical data of online transformer monitoring provided by the State Grid Corporation of China are adopted as sample sets. The simulation results demonstrate that the proposed decision framework can reach high diagnosis accuracy while shortening the training time." @default.
- W4288679912 created "2022-07-30" @default.
- W4288679912 creator A5029941351 @default.
- W4288679912 creator A5062440795 @default.
- W4288679912 creator A5069509238 @default.
- W4288679912 creator A5071840296 @default.
- W4288679912 creator A5079469966 @default.
- W4288679912 date "2022-11-01" @default.
- W4288679912 modified "2023-10-03" @default.
- W4288679912 title "A novel SVM-based decision framework considering feature distribution for Power Transformer Fault Diagnosis" @default.
- W4288679912 cites W2084277209 @default.
- W4288679912 cites W2158817828 @default.
- W4288679912 cites W2551488610 @default.
- W4288679912 cites W2781675902 @default.
- W4288679912 cites W2911272908 @default.
- W4288679912 cites W2935800046 @default.
- W4288679912 cites W2944153608 @default.
- W4288679912 cites W2951280230 @default.
- W4288679912 cites W2969419307 @default.
- W4288679912 cites W3006187787 @default.
- W4288679912 cites W3015353599 @default.
- W4288679912 cites W3016940304 @default.
- W4288679912 cites W3106646795 @default.
- W4288679912 cites W3135681200 @default.
- W4288679912 cites W3216312826 @default.
- W4288679912 cites W3216493780 @default.
- W4288679912 cites W3217469713 @default.
- W4288679912 cites W4224881299 @default.
- W4288679912 cites W4226454857 @default.
- W4288679912 cites W4285262630 @default.
- W4288679912 doi "https://doi.org/10.1016/j.egyr.2022.07.062" @default.
- W4288679912 hasPublicationYear "2022" @default.
- W4288679912 type Work @default.
- W4288679912 citedByCount "5" @default.
- W4288679912 countsByYear W42886799122023 @default.
- W4288679912 crossrefType "journal-article" @default.
- W4288679912 hasAuthorship W4288679912A5029941351 @default.
- W4288679912 hasAuthorship W4288679912A5062440795 @default.
- W4288679912 hasAuthorship W4288679912A5069509238 @default.
- W4288679912 hasAuthorship W4288679912A5071840296 @default.
- W4288679912 hasAuthorship W4288679912A5079469966 @default.
- W4288679912 hasBestOaLocation W42886799121 @default.
- W4288679912 hasConcept C10485038 @default.
- W4288679912 hasConcept C119857082 @default.
- W4288679912 hasConcept C12267149 @default.
- W4288679912 hasConcept C124101348 @default.
- W4288679912 hasConcept C127413603 @default.
- W4288679912 hasConcept C153180895 @default.
- W4288679912 hasConcept C154945302 @default.
- W4288679912 hasConcept C41008148 @default.
- W4288679912 hasConcept C42023084 @default.
- W4288679912 hasConcept C52622490 @default.
- W4288679912 hasConcept C84525736 @default.
- W4288679912 hasConceptScore W4288679912C10485038 @default.
- W4288679912 hasConceptScore W4288679912C119857082 @default.
- W4288679912 hasConceptScore W4288679912C12267149 @default.
- W4288679912 hasConceptScore W4288679912C124101348 @default.
- W4288679912 hasConceptScore W4288679912C127413603 @default.
- W4288679912 hasConceptScore W4288679912C153180895 @default.
- W4288679912 hasConceptScore W4288679912C154945302 @default.
- W4288679912 hasConceptScore W4288679912C41008148 @default.
- W4288679912 hasConceptScore W4288679912C42023084 @default.
- W4288679912 hasConceptScore W4288679912C52622490 @default.
- W4288679912 hasConceptScore W4288679912C84525736 @default.
- W4288679912 hasLocation W42886799121 @default.
- W4288679912 hasLocation W42886799122 @default.
- W4288679912 hasOpenAccess W4288679912 @default.
- W4288679912 hasPrimaryLocation W42886799121 @default.
- W4288679912 hasRelatedWork W2041399278 @default.
- W4288679912 hasRelatedWork W2136184105 @default.
- W4288679912 hasRelatedWork W2160451891 @default.
- W4288679912 hasRelatedWork W2336974148 @default.
- W4288679912 hasRelatedWork W3013515612 @default.
- W4288679912 hasRelatedWork W4224946860 @default.
- W4288679912 hasRelatedWork W4283697347 @default.
- W4288679912 hasRelatedWork W4321636153 @default.
- W4288679912 hasRelatedWork W2187500075 @default.
- W4288679912 hasRelatedWork W2345184372 @default.
- W4288679912 hasVolume "8" @default.
- W4288679912 isParatext "false" @default.
- W4288679912 isRetracted "false" @default.
- W4288679912 workType "article" @default.