Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288692014> ?p ?o ?g. }
- W4288692014 abstract "Patellofemoral pain syndrome (PFPS) is a common, yet misunderstood, knee pathology. Early accurate diagnosis can help avoid the deterioration of the disease. However, the existing intelligent auxiliary diagnosis methods of PFPS mainly focused on the biosignal of individuals but neglected the common biometrics of patients. In this paper, we propose a PFPS classification method based on the fused biometrics information Graph Convolution Neural Networks (FBI-GCN) which focuses on both the biosignal information of individuals and the common characteristics of patients. The method first constructs a graph which uses each subject as a node and fuses the biometrics information (demographics and gait biosignal) of different subjects as edges. Then, the graph and node information [biosignal information, including the joint kinematics and surface electromyography (sEMG)] are used as the inputs to the GCN for diagnosis and classification of PFPS. The method is tested on a public dataset which contain walking and running data from 26 PFPS patients and 15 pain-free controls. The results suggest that our method can classify PFPS and pain-free with higher accuracy (mean accuracy = 0.8531 ± 0.047) than other methods with the biosignal information of individuals as input (mean accuracy = 0.813 ± 0.048). After optimal selection of input variables, the highest classification accuracy (mean accuracy = 0.9245 ± 0.034) can be obtained, and a high accuracy can still be obtained with a 40% reduction in test variables (mean accuracy = 0.8802 ± 0.035). Accordingly, the method effectively reflects the association between subjects, provides a simple and effective aid for physicians to diagnose PFPS, and gives new ideas for studying and validating risk factors related to PFPS." @default.
- W4288692014 created "2022-07-30" @default.
- W4288692014 creator A5001829437 @default.
- W4288692014 creator A5005122591 @default.
- W4288692014 creator A5013099071 @default.
- W4288692014 creator A5025734619 @default.
- W4288692014 creator A5062810392 @default.
- W4288692014 creator A5069366127 @default.
- W4288692014 creator A5077423313 @default.
- W4288692014 date "2022-07-29" @default.
- W4288692014 modified "2023-10-01" @default.
- W4288692014 title "A fused biometrics information graph convolutional neural network for effective classification of patellofemoral pain syndrome" @default.
- W4288692014 cites W1864077495 @default.
- W4288692014 cites W1916251721 @default.
- W4288692014 cites W1966646882 @default.
- W4288692014 cites W1969791712 @default.
- W4288692014 cites W1989194220 @default.
- W4288692014 cites W2010583687 @default.
- W4288692014 cites W2019399465 @default.
- W4288692014 cites W2035584097 @default.
- W4288692014 cites W2067359535 @default.
- W4288692014 cites W2071925216 @default.
- W4288692014 cites W2076666920 @default.
- W4288692014 cites W2102901243 @default.
- W4288692014 cites W2104342358 @default.
- W4288692014 cites W2124381064 @default.
- W4288692014 cites W2124905880 @default.
- W4288692014 cites W2135270981 @default.
- W4288692014 cites W2141039902 @default.
- W4288692014 cites W2141854008 @default.
- W4288692014 cites W2142048971 @default.
- W4288692014 cites W2160641081 @default.
- W4288692014 cites W2470779975 @default.
- W4288692014 cites W2547802736 @default.
- W4288692014 cites W2560200843 @default.
- W4288692014 cites W2767297314 @default.
- W4288692014 cites W2783371735 @default.
- W4288692014 cites W2788242618 @default.
- W4288692014 cites W2790404832 @default.
- W4288692014 cites W2806489700 @default.
- W4288692014 cites W2915722752 @default.
- W4288692014 cites W2916773987 @default.
- W4288692014 cites W3082773792 @default.
- W4288692014 cites W3128928779 @default.
- W4288692014 cites W3152893301 @default.
- W4288692014 cites W3154437454 @default.
- W4288692014 cites W3165031368 @default.
- W4288692014 cites W3187525041 @default.
- W4288692014 cites W3209047863 @default.
- W4288692014 cites W3212761486 @default.
- W4288692014 cites W3215778722 @default.
- W4288692014 cites W4210727099 @default.
- W4288692014 cites W4213436958 @default.
- W4288692014 cites W4220946389 @default.
- W4288692014 cites W4221022534 @default.
- W4288692014 cites W4224884269 @default.
- W4288692014 cites W4230603309 @default.
- W4288692014 cites W4288755256 @default.
- W4288692014 doi "https://doi.org/10.3389/fnins.2022.976249" @default.
- W4288692014 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35968371" @default.
- W4288692014 hasPublicationYear "2022" @default.
- W4288692014 type Work @default.
- W4288692014 citedByCount "0" @default.
- W4288692014 crossrefType "journal-article" @default.
- W4288692014 hasAuthorship W4288692014A5001829437 @default.
- W4288692014 hasAuthorship W4288692014A5005122591 @default.
- W4288692014 hasAuthorship W4288692014A5013099071 @default.
- W4288692014 hasAuthorship W4288692014A5025734619 @default.
- W4288692014 hasAuthorship W4288692014A5062810392 @default.
- W4288692014 hasAuthorship W4288692014A5069366127 @default.
- W4288692014 hasAuthorship W4288692014A5077423313 @default.
- W4288692014 hasBestOaLocation W42886920141 @default.
- W4288692014 hasConcept C106131492 @default.
- W4288692014 hasConcept C132525143 @default.
- W4288692014 hasConcept C142724271 @default.
- W4288692014 hasConcept C153180895 @default.
- W4288692014 hasConcept C154945302 @default.
- W4288692014 hasConcept C184297639 @default.
- W4288692014 hasConcept C1862650 @default.
- W4288692014 hasConcept C204787440 @default.
- W4288692014 hasConcept C2779055241 @default.
- W4288692014 hasConcept C2779734345 @default.
- W4288692014 hasConcept C31972630 @default.
- W4288692014 hasConcept C41008148 @default.
- W4288692014 hasConcept C71924100 @default.
- W4288692014 hasConcept C80444323 @default.
- W4288692014 hasConcept C81363708 @default.
- W4288692014 hasConcept C99508421 @default.
- W4288692014 hasConceptScore W4288692014C106131492 @default.
- W4288692014 hasConceptScore W4288692014C132525143 @default.
- W4288692014 hasConceptScore W4288692014C142724271 @default.
- W4288692014 hasConceptScore W4288692014C153180895 @default.
- W4288692014 hasConceptScore W4288692014C154945302 @default.
- W4288692014 hasConceptScore W4288692014C184297639 @default.
- W4288692014 hasConceptScore W4288692014C1862650 @default.
- W4288692014 hasConceptScore W4288692014C204787440 @default.
- W4288692014 hasConceptScore W4288692014C2779055241 @default.
- W4288692014 hasConceptScore W4288692014C2779734345 @default.
- W4288692014 hasConceptScore W4288692014C31972630 @default.
- W4288692014 hasConceptScore W4288692014C41008148 @default.