Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288705518> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4288705518 abstract "Abstract Background Reference intervals represent the expected range of physiological test results in a healthy population and are essential to support medical decision making. Particularly in the context of pediatric reference intervals, where recruitment regulations make prospective studies challenging to conduct, indirect estimation strategies are becoming increasingly important. Established indirect methods enable robust identification of the distribution of “healthy” samples from laboratory databases, which include unlabeled pathologic cases, but are currently severely limited when adjusting for essential patient characteristics such as age. Here, we propose the use of mixture density networks (MDN) to overcome this problem and model all parameters of the mixture distribution in a single step. Results Estimated reference intervals from varying settings with simulated data demonstrate the ability to accurately estimate latent distributions from unlabeled data using different implementations of MDNs. Comparing the performance with alternative estimation approaches further highlights the importance of modeling the mixture component weights as a function of the input in order to avoid biased estimates for all other parameters and the resulting reference intervals. We also provide a strategy to generate partially customized starting weights to improve proper identification of the latent components. Finally, the application on real-world hemoglobin samples provides results in line with current gold standard approaches, but also suggests further investigations with respect to adequate regularization strategies in order to prevent overfitting the data. Conclusions Mixture density networks provide a promising approach capable of extracting the distribution of healthy samples from unlabeled laboratory databases while simultaneously and explicitly estimating all parameters and component weights as non-linear functions of the covariate(s), thereby allowing the estimation of age-dependent reference intervals in a single step. Further studies on model regularization and asymmetric component distributions are warranted to consolidate our findings and expand the scope of applications." @default.
- W4288705518 created "2022-07-30" @default.
- W4288705518 creator A5006902289 @default.
- W4288705518 creator A5015914687 @default.
- W4288705518 creator A5019784391 @default.
- W4288705518 creator A5022688021 @default.
- W4288705518 creator A5027339915 @default.
- W4288705518 date "2022-07-29" @default.
- W4288705518 modified "2023-10-09" @default.
- W4288705518 title "Mixture density networks for the indirect estimation of reference intervals" @default.
- W4288705518 cites W1507444366 @default.
- W4288705518 cites W1967558103 @default.
- W4288705518 cites W1995341919 @default.
- W4288705518 cites W2016074473 @default.
- W4288705518 cites W2016548223 @default.
- W4288705518 cites W2023689787 @default.
- W4288705518 cites W2029293874 @default.
- W4288705518 cites W2036617620 @default.
- W4288705518 cites W2040870580 @default.
- W4288705518 cites W2068835111 @default.
- W4288705518 cites W2119063824 @default.
- W4288705518 cites W2123692721 @default.
- W4288705518 cites W2124186730 @default.
- W4288705518 cites W2154065358 @default.
- W4288705518 cites W2159135906 @default.
- W4288705518 cites W2291253625 @default.
- W4288705518 cites W2511072246 @default.
- W4288705518 cites W2530488227 @default.
- W4288705518 cites W2801255824 @default.
- W4288705518 cites W3003404273 @default.
- W4288705518 cites W3103713301 @default.
- W4288705518 cites W3189608757 @default.
- W4288705518 cites W4300956553 @default.
- W4288705518 doi "https://doi.org/10.1186/s12859-022-04846-0" @default.
- W4288705518 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35906555" @default.
- W4288705518 hasPublicationYear "2022" @default.
- W4288705518 type Work @default.
- W4288705518 citedByCount "1" @default.
- W4288705518 countsByYear W42887055182023 @default.
- W4288705518 crossrefType "journal-article" @default.
- W4288705518 hasAuthorship W4288705518A5006902289 @default.
- W4288705518 hasAuthorship W4288705518A5015914687 @default.
- W4288705518 hasAuthorship W4288705518A5019784391 @default.
- W4288705518 hasAuthorship W4288705518A5022688021 @default.
- W4288705518 hasAuthorship W4288705518A5027339915 @default.
- W4288705518 hasBestOaLocation W42887055181 @default.
- W4288705518 hasConcept C105795698 @default.
- W4288705518 hasConcept C116834253 @default.
- W4288705518 hasConcept C119857082 @default.
- W4288705518 hasConcept C124101348 @default.
- W4288705518 hasConcept C151730666 @default.
- W4288705518 hasConcept C153180895 @default.
- W4288705518 hasConcept C154945302 @default.
- W4288705518 hasConcept C22019652 @default.
- W4288705518 hasConcept C2779343474 @default.
- W4288705518 hasConcept C33923547 @default.
- W4288705518 hasConcept C41008148 @default.
- W4288705518 hasConcept C50644808 @default.
- W4288705518 hasConcept C59822182 @default.
- W4288705518 hasConcept C61224824 @default.
- W4288705518 hasConcept C86803240 @default.
- W4288705518 hasConceptScore W4288705518C105795698 @default.
- W4288705518 hasConceptScore W4288705518C116834253 @default.
- W4288705518 hasConceptScore W4288705518C119857082 @default.
- W4288705518 hasConceptScore W4288705518C124101348 @default.
- W4288705518 hasConceptScore W4288705518C151730666 @default.
- W4288705518 hasConceptScore W4288705518C153180895 @default.
- W4288705518 hasConceptScore W4288705518C154945302 @default.
- W4288705518 hasConceptScore W4288705518C22019652 @default.
- W4288705518 hasConceptScore W4288705518C2779343474 @default.
- W4288705518 hasConceptScore W4288705518C33923547 @default.
- W4288705518 hasConceptScore W4288705518C41008148 @default.
- W4288705518 hasConceptScore W4288705518C50644808 @default.
- W4288705518 hasConceptScore W4288705518C59822182 @default.
- W4288705518 hasConceptScore W4288705518C61224824 @default.
- W4288705518 hasConceptScore W4288705518C86803240 @default.
- W4288705518 hasFunder F4320320873 @default.
- W4288705518 hasFunder F4320320882 @default.
- W4288705518 hasIssue "1" @default.
- W4288705518 hasLocation W42887055181 @default.
- W4288705518 hasLocation W42887055182 @default.
- W4288705518 hasLocation W42887055183 @default.
- W4288705518 hasLocation W42887055184 @default.
- W4288705518 hasLocation W42887055185 @default.
- W4288705518 hasOpenAccess W4288705518 @default.
- W4288705518 hasPrimaryLocation W42887055181 @default.
- W4288705518 hasRelatedWork W1996541855 @default.
- W4288705518 hasRelatedWork W2742991909 @default.
- W4288705518 hasRelatedWork W2767651786 @default.
- W4288705518 hasRelatedWork W2940336242 @default.
- W4288705518 hasRelatedWork W2989932438 @default.
- W4288705518 hasRelatedWork W3099765033 @default.
- W4288705518 hasRelatedWork W4210794429 @default.
- W4288705518 hasRelatedWork W4283732135 @default.
- W4288705518 hasRelatedWork W4313159793 @default.
- W4288705518 hasRelatedWork W4361732492 @default.
- W4288705518 hasVolume "23" @default.
- W4288705518 isParatext "false" @default.
- W4288705518 isRetracted "false" @default.
- W4288705518 workType "article" @default.