Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288720121> ?p ?o ?g. }
- W4288720121 endingPage "2670" @default.
- W4288720121 startingPage "2670" @default.
- W4288720121 abstract "The present paper focuses on the analysis of large data sets from public transport networks, more specifically, on how to predict urban bus passenger demand. A series of steps are proposed to ease the understanding of passenger demand. First, given the large number of stops in the bus network, these are divided into clusters and then different models are fitted for a representative of each of the clusters. The aim is to compare and combine the predictions associated with traditional methods, such as exponential smoothing or ARIMA, with machine learning methods, such as support vector machines or artificial neural networks. Moreover, support vector machine predictions are improved by incorporating explanatory variables with temporal structure and moving averages. Finally, through cointegration techniques, the results obtained for the representative of each group are extrapolated to the rest of the series within the same cluster. A case study in the city of Salamanca (Spain) is presented to illustrate the problem." @default.
- W4288720121 created "2022-07-30" @default.
- W4288720121 creator A5014877946 @default.
- W4288720121 creator A5017735219 @default.
- W4288720121 creator A5067836489 @default.
- W4288720121 creator A5072807495 @default.
- W4288720121 date "2022-07-28" @default.
- W4288720121 modified "2023-10-02" @default.
- W4288720121 title "Clustering and Forecasting Urban Bus Passenger Demand with a Combination of Time Series Models" @default.
- W4288720121 cites W1528765510 @default.
- W4288720121 cites W1605276600 @default.
- W4288720121 cites W1986528915 @default.
- W4288720121 cites W1999776337 @default.
- W4288720121 cites W2003058432 @default.
- W4288720121 cites W2028999483 @default.
- W4288720121 cites W2034707435 @default.
- W4288720121 cites W2049623660 @default.
- W4288720121 cites W2085866051 @default.
- W4288720121 cites W2093652038 @default.
- W4288720121 cites W2098148222 @default.
- W4288720121 cites W2136063736 @default.
- W4288720121 cites W2161020850 @default.
- W4288720121 cites W2167036165 @default.
- W4288720121 cites W2410543851 @default.
- W4288720121 cites W2513361716 @default.
- W4288720121 cites W2605048719 @default.
- W4288720121 cites W2921578338 @default.
- W4288720121 cites W2943360680 @default.
- W4288720121 cites W2953427696 @default.
- W4288720121 cites W3004135030 @default.
- W4288720121 cites W3082038066 @default.
- W4288720121 cites W3111510387 @default.
- W4288720121 cites W3134095811 @default.
- W4288720121 cites W4220894345 @default.
- W4288720121 doi "https://doi.org/10.3390/math10152670" @default.
- W4288720121 hasPublicationYear "2022" @default.
- W4288720121 type Work @default.
- W4288720121 citedByCount "3" @default.
- W4288720121 countsByYear W42887201212022 @default.
- W4288720121 countsByYear W42887201212023 @default.
- W4288720121 crossrefType "journal-article" @default.
- W4288720121 hasAuthorship W4288720121A5014877946 @default.
- W4288720121 hasAuthorship W4288720121A5017735219 @default.
- W4288720121 hasAuthorship W4288720121A5067836489 @default.
- W4288720121 hasAuthorship W4288720121A5072807495 @default.
- W4288720121 hasBestOaLocation W42887201211 @default.
- W4288720121 hasConcept C119857082 @default.
- W4288720121 hasConcept C12267149 @default.
- W4288720121 hasConcept C124101348 @default.
- W4288720121 hasConcept C127413603 @default.
- W4288720121 hasConcept C133710760 @default.
- W4288720121 hasConcept C143724316 @default.
- W4288720121 hasConcept C145162277 @default.
- W4288720121 hasConcept C149782125 @default.
- W4288720121 hasConcept C151406439 @default.
- W4288720121 hasConcept C151730666 @default.
- W4288720121 hasConcept C154945302 @default.
- W4288720121 hasConcept C22212356 @default.
- W4288720121 hasConcept C24338571 @default.
- W4288720121 hasConcept C31972630 @default.
- W4288720121 hasConcept C33923547 @default.
- W4288720121 hasConcept C41008148 @default.
- W4288720121 hasConcept C50644808 @default.
- W4288720121 hasConcept C539828613 @default.
- W4288720121 hasConcept C73555534 @default.
- W4288720121 hasConcept C86803240 @default.
- W4288720121 hasConceptScore W4288720121C119857082 @default.
- W4288720121 hasConceptScore W4288720121C12267149 @default.
- W4288720121 hasConceptScore W4288720121C124101348 @default.
- W4288720121 hasConceptScore W4288720121C127413603 @default.
- W4288720121 hasConceptScore W4288720121C133710760 @default.
- W4288720121 hasConceptScore W4288720121C143724316 @default.
- W4288720121 hasConceptScore W4288720121C145162277 @default.
- W4288720121 hasConceptScore W4288720121C149782125 @default.
- W4288720121 hasConceptScore W4288720121C151406439 @default.
- W4288720121 hasConceptScore W4288720121C151730666 @default.
- W4288720121 hasConceptScore W4288720121C154945302 @default.
- W4288720121 hasConceptScore W4288720121C22212356 @default.
- W4288720121 hasConceptScore W4288720121C24338571 @default.
- W4288720121 hasConceptScore W4288720121C31972630 @default.
- W4288720121 hasConceptScore W4288720121C33923547 @default.
- W4288720121 hasConceptScore W4288720121C41008148 @default.
- W4288720121 hasConceptScore W4288720121C50644808 @default.
- W4288720121 hasConceptScore W4288720121C539828613 @default.
- W4288720121 hasConceptScore W4288720121C73555534 @default.
- W4288720121 hasConceptScore W4288720121C86803240 @default.
- W4288720121 hasFunder F4320325114 @default.
- W4288720121 hasFunder F4320335598 @default.
- W4288720121 hasIssue "15" @default.
- W4288720121 hasLocation W42887201211 @default.
- W4288720121 hasOpenAccess W4288720121 @default.
- W4288720121 hasPrimaryLocation W42887201211 @default.
- W4288720121 hasRelatedWork W1565187617 @default.
- W4288720121 hasRelatedWork W2365520989 @default.
- W4288720121 hasRelatedWork W2810484613 @default.
- W4288720121 hasRelatedWork W2899803863 @default.
- W4288720121 hasRelatedWork W2906471315 @default.
- W4288720121 hasRelatedWork W3123009390 @default.