Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288725046> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4288725046 endingPage "212" @default.
- W4288725046 startingPage "181" @default.
- W4288725046 abstract "The effect of the COVID-19 pandemic has prompted a large number of studies targeted at understanding, monitoring, and containing the disease. However, it is still unclear whether the studies performed so far have filled existing knowledge gaps. We used computational intelligence (CI)/Machine Learning (ML) technologies and alliance areas to analyse this massive amount of information at scale. This chapter assesses the scholarly progress and prominent research domains in the use of CI/ML technologies in COVID-19 research, focusing on the specific literature on computational intelligence and related fields that have been employed for “diagnosis and treatment” of COVID-19 patients.The “Web of Science” database was used to retrieve all existing and highly cited papers published up to November 2020. Based on bibliometric indicators, a search query (“Computational Intelligence or Neural Networks or Fuzzy Systems or Evolutionary Computation & Diagnosis or Treatment & Coronavirus or Corona Virus or COVID-19”) was used to retrieve the data sets. The growth of research publications, elements of research activities, publication patterns, and research focus tendencies were computed using ‘Biblioshiny’ software and data visualization software ‘VOS viewer.’ Further, bibliometric/scientometrics techniques were incorporated to know the most productive countries, most preferred sources & their impact, three-field plot, and the most cited papers. This analysis provides a comprehensive overview of the “COVID-19” and CI-related research, helping researchers, policymakers, and practitioners better understand COVID-19 related CI research and its possible practical impact. Future CI / ML Studies should be committed to filling the gap between CI / ML research." @default.
- W4288725046 created "2022-07-30" @default.
- W4288725046 creator A5002594751 @default.
- W4288725046 creator A5016017067 @default.
- W4288725046 creator A5060887724 @default.
- W4288725046 creator A5088619123 @default.
- W4288725046 date "2022-07-27" @default.
- W4288725046 modified "2023-09-27" @default.
- W4288725046 title "The Quantitative and Qualitative Assessment of Re-Search Conducted Using Computational Intelligence for the Diagnosis or Treatment of COVID-19" @default.
- W4288725046 doi "https://doi.org/10.2174/9789815040401122030010" @default.
- W4288725046 hasPublicationYear "2022" @default.
- W4288725046 type Work @default.
- W4288725046 citedByCount "0" @default.
- W4288725046 crossrefType "book-chapter" @default.
- W4288725046 hasAuthorship W4288725046A5002594751 @default.
- W4288725046 hasAuthorship W4288725046A5016017067 @default.
- W4288725046 hasAuthorship W4288725046A5060887724 @default.
- W4288725046 hasAuthorship W4288725046A5088619123 @default.
- W4288725046 hasConcept C124101348 @default.
- W4288725046 hasConcept C127413603 @default.
- W4288725046 hasConcept C136764020 @default.
- W4288725046 hasConcept C139502532 @default.
- W4288725046 hasConcept C142724271 @default.
- W4288725046 hasConcept C154945302 @default.
- W4288725046 hasConcept C178315738 @default.
- W4288725046 hasConcept C202444582 @default.
- W4288725046 hasConcept C2522767166 @default.
- W4288725046 hasConcept C2779134260 @default.
- W4288725046 hasConcept C3008058167 @default.
- W4288725046 hasConcept C33923547 @default.
- W4288725046 hasConcept C41008148 @default.
- W4288725046 hasConcept C521491914 @default.
- W4288725046 hasConcept C524204448 @default.
- W4288725046 hasConcept C525823164 @default.
- W4288725046 hasConcept C539667460 @default.
- W4288725046 hasConcept C71924100 @default.
- W4288725046 hasConcept C75684735 @default.
- W4288725046 hasConcept C9652623 @default.
- W4288725046 hasConceptScore W4288725046C124101348 @default.
- W4288725046 hasConceptScore W4288725046C127413603 @default.
- W4288725046 hasConceptScore W4288725046C136764020 @default.
- W4288725046 hasConceptScore W4288725046C139502532 @default.
- W4288725046 hasConceptScore W4288725046C142724271 @default.
- W4288725046 hasConceptScore W4288725046C154945302 @default.
- W4288725046 hasConceptScore W4288725046C178315738 @default.
- W4288725046 hasConceptScore W4288725046C202444582 @default.
- W4288725046 hasConceptScore W4288725046C2522767166 @default.
- W4288725046 hasConceptScore W4288725046C2779134260 @default.
- W4288725046 hasConceptScore W4288725046C3008058167 @default.
- W4288725046 hasConceptScore W4288725046C33923547 @default.
- W4288725046 hasConceptScore W4288725046C41008148 @default.
- W4288725046 hasConceptScore W4288725046C521491914 @default.
- W4288725046 hasConceptScore W4288725046C524204448 @default.
- W4288725046 hasConceptScore W4288725046C525823164 @default.
- W4288725046 hasConceptScore W4288725046C539667460 @default.
- W4288725046 hasConceptScore W4288725046C71924100 @default.
- W4288725046 hasConceptScore W4288725046C75684735 @default.
- W4288725046 hasConceptScore W4288725046C9652623 @default.
- W4288725046 hasLocation W42887250461 @default.
- W4288725046 hasOpenAccess W4288725046 @default.
- W4288725046 hasPrimaryLocation W42887250461 @default.
- W4288725046 hasRelatedWork W1972774854 @default.
- W4288725046 hasRelatedWork W2183887601 @default.
- W4288725046 hasRelatedWork W2297477367 @default.
- W4288725046 hasRelatedWork W2962788265 @default.
- W4288725046 hasRelatedWork W3007714974 @default.
- W4288725046 hasRelatedWork W3025072166 @default.
- W4288725046 hasRelatedWork W3042008996 @default.
- W4288725046 hasRelatedWork W4288725046 @default.
- W4288725046 hasRelatedWork W4310919946 @default.
- W4288725046 hasRelatedWork W1855449969 @default.
- W4288725046 isParatext "false" @default.
- W4288725046 isRetracted "false" @default.
- W4288725046 workType "book-chapter" @default.