Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288727710> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4288727710 abstract "Understanding human behavior is an important task and has applications in many domains such as targeted advertisement, health analytics, security, and entertainment, etc. For this purpose, designing a system for activity recognition (AR) is important. However, since every human can have different behaviors, understanding and analyzing common patterns become a challenging task. Since smartphones are easily available to every human being in the modern world, using them to track the human activities becomes possible. In this paper, we extracted different human activities using accelerometer, magnetometer, and gyroscope sensors of android smartphones by building an android mobile applications. Using different social media applications, such as Facebook, Instagram, Whatsapp, and Twitter, we extracted the raw sensor values along with the attributes of $29$ subjects along with their attributes (class labels) such as age, gender, and left/right/both hands application usage. We extract features from the raw signals and use them to perform classification using different machine learning (ML) algorithms. Using statistical analysis, we show the importance of different features towards the prediction of class labels. In the end, we use the trained ML model on our data to extract unknown features from a well known activity recognition data from UCI repository, which highlights the potential of privacy breach using ML models. This security analysis could help researchers in future to take appropriate steps to preserve the privacy of human subjects." @default.
- W4288727710 created "2022-07-30" @default.
- W4288727710 creator A5064858842 @default.
- W4288727710 date "2022-07-26" @default.
- W4288727710 modified "2023-10-17" @default.
- W4288727710 title "Information We Can Extract About a User From 'One Minute Mobile Application Usage'" @default.
- W4288727710 doi "https://doi.org/10.48550/arxiv.2207.13222" @default.
- W4288727710 hasPublicationYear "2022" @default.
- W4288727710 type Work @default.
- W4288727710 citedByCount "0" @default.
- W4288727710 crossrefType "posted-content" @default.
- W4288727710 hasAuthorship W4288727710A5064858842 @default.
- W4288727710 hasBestOaLocation W42887277101 @default.
- W4288727710 hasConcept C107457646 @default.
- W4288727710 hasConcept C111919701 @default.
- W4288727710 hasConcept C119857082 @default.
- W4288727710 hasConcept C121687571 @default.
- W4288727710 hasConcept C127413603 @default.
- W4288727710 hasConcept C132964779 @default.
- W4288727710 hasConcept C136764020 @default.
- W4288727710 hasConcept C142362112 @default.
- W4288727710 hasConcept C146978453 @default.
- W4288727710 hasConcept C153349607 @default.
- W4288727710 hasConcept C154945302 @default.
- W4288727710 hasConcept C158488048 @default.
- W4288727710 hasConcept C186967261 @default.
- W4288727710 hasConcept C199360897 @default.
- W4288727710 hasConcept C201995342 @default.
- W4288727710 hasConcept C2522767166 @default.
- W4288727710 hasConcept C2777212361 @default.
- W4288727710 hasConcept C2780451532 @default.
- W4288727710 hasConcept C41008148 @default.
- W4288727710 hasConcept C512170562 @default.
- W4288727710 hasConcept C518677369 @default.
- W4288727710 hasConcept C557433098 @default.
- W4288727710 hasConcept C79158427 @default.
- W4288727710 hasConcept C89805583 @default.
- W4288727710 hasConcept C95623464 @default.
- W4288727710 hasConceptScore W4288727710C107457646 @default.
- W4288727710 hasConceptScore W4288727710C111919701 @default.
- W4288727710 hasConceptScore W4288727710C119857082 @default.
- W4288727710 hasConceptScore W4288727710C121687571 @default.
- W4288727710 hasConceptScore W4288727710C127413603 @default.
- W4288727710 hasConceptScore W4288727710C132964779 @default.
- W4288727710 hasConceptScore W4288727710C136764020 @default.
- W4288727710 hasConceptScore W4288727710C142362112 @default.
- W4288727710 hasConceptScore W4288727710C146978453 @default.
- W4288727710 hasConceptScore W4288727710C153349607 @default.
- W4288727710 hasConceptScore W4288727710C154945302 @default.
- W4288727710 hasConceptScore W4288727710C158488048 @default.
- W4288727710 hasConceptScore W4288727710C186967261 @default.
- W4288727710 hasConceptScore W4288727710C199360897 @default.
- W4288727710 hasConceptScore W4288727710C201995342 @default.
- W4288727710 hasConceptScore W4288727710C2522767166 @default.
- W4288727710 hasConceptScore W4288727710C2777212361 @default.
- W4288727710 hasConceptScore W4288727710C2780451532 @default.
- W4288727710 hasConceptScore W4288727710C41008148 @default.
- W4288727710 hasConceptScore W4288727710C512170562 @default.
- W4288727710 hasConceptScore W4288727710C518677369 @default.
- W4288727710 hasConceptScore W4288727710C557433098 @default.
- W4288727710 hasConceptScore W4288727710C79158427 @default.
- W4288727710 hasConceptScore W4288727710C89805583 @default.
- W4288727710 hasConceptScore W4288727710C95623464 @default.
- W4288727710 hasLocation W42887277101 @default.
- W4288727710 hasOpenAccess W4288727710 @default.
- W4288727710 hasPrimaryLocation W42887277101 @default.
- W4288727710 hasRelatedWork W11524489 @default.
- W4288727710 hasRelatedWork W11991885 @default.
- W4288727710 hasRelatedWork W12070778 @default.
- W4288727710 hasRelatedWork W14246085 @default.
- W4288727710 hasRelatedWork W3856460 @default.
- W4288727710 hasRelatedWork W4608309 @default.
- W4288727710 hasRelatedWork W630684 @default.
- W4288727710 hasRelatedWork W8198582 @default.
- W4288727710 hasRelatedWork W8248617 @default.
- W4288727710 hasRelatedWork W9292421 @default.
- W4288727710 isParatext "false" @default.
- W4288727710 isRetracted "false" @default.
- W4288727710 workType "article" @default.