Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288730871> ?p ?o ?g. }
- W4288730871 abstract "In nonparametric analyses, many authors indicate that the kernel density functions work well when the variable is close to the Gaussian shape. This chapter interest is on the improvement the forecastability of the functional nonparametric time series by using a new approach of the parametric power transformation. The choice of the power parameter in this approach is based on minimizing the mean integrated square error of kernel estimation. Many authors have used this criterion in estimating density under the assumption that the original data follow a known probability distribution. In this chapter, the authors assumed that the original data were of unknown distribution and set the theoretical framework to derive a criterion for estimating the power parameter and proposed an application algorithm in two-time series of temperature monthly averages." @default.
- W4288730871 created "2022-07-30" @default.
- W4288730871 creator A5002244976 @default.
- W4288730871 creator A5022732163 @default.
- W4288730871 date "2023-01-18" @default.
- W4288730871 modified "2023-09-25" @default.
- W4288730871 title "A New Approach of Power Transformations in Functional Non-Parametric Temperature Time Series" @default.
- W4288730871 cites W129305155 @default.
- W4288730871 cites W1607386533 @default.
- W4288730871 cites W1925427981 @default.
- W4288730871 cites W1983960282 @default.
- W4288730871 cites W2000454470 @default.
- W4288730871 cites W2007242302 @default.
- W4288730871 cites W2030893227 @default.
- W4288730871 cites W2037681041 @default.
- W4288730871 cites W2048315575 @default.
- W4288730871 cites W2048559274 @default.
- W4288730871 cites W2059197051 @default.
- W4288730871 cites W2059977044 @default.
- W4288730871 cites W2073063610 @default.
- W4288730871 cites W2082971569 @default.
- W4288730871 cites W2143887573 @default.
- W4288730871 cites W2145265729 @default.
- W4288730871 cites W2552872240 @default.
- W4288730871 cites W3008450077 @default.
- W4288730871 cites W3118409950 @default.
- W4288730871 cites W3127951730 @default.
- W4288730871 doi "https://doi.org/10.5772/intechopen.105832" @default.
- W4288730871 hasPublicationYear "2023" @default.
- W4288730871 type Work @default.
- W4288730871 citedByCount "0" @default.
- W4288730871 crossrefType "book-chapter" @default.
- W4288730871 hasAuthorship W4288730871A5002244976 @default.
- W4288730871 hasAuthorship W4288730871A5022732163 @default.
- W4288730871 hasBestOaLocation W42887308711 @default.
- W4288730871 hasConcept C102366305 @default.
- W4288730871 hasConcept C104317684 @default.
- W4288730871 hasConcept C105795698 @default.
- W4288730871 hasConcept C117251300 @default.
- W4288730871 hasConcept C118615104 @default.
- W4288730871 hasConcept C121332964 @default.
- W4288730871 hasConcept C122280245 @default.
- W4288730871 hasConcept C12267149 @default.
- W4288730871 hasConcept C126255220 @default.
- W4288730871 hasConcept C143724316 @default.
- W4288730871 hasConcept C151406439 @default.
- W4288730871 hasConcept C151730666 @default.
- W4288730871 hasConcept C154945302 @default.
- W4288730871 hasConcept C163716315 @default.
- W4288730871 hasConcept C185429906 @default.
- W4288730871 hasConcept C185592680 @default.
- W4288730871 hasConcept C195699287 @default.
- W4288730871 hasConcept C200695384 @default.
- W4288730871 hasConcept C204241405 @default.
- W4288730871 hasConcept C24574437 @default.
- W4288730871 hasConcept C28826006 @default.
- W4288730871 hasConcept C33923547 @default.
- W4288730871 hasConcept C41008148 @default.
- W4288730871 hasConcept C55493867 @default.
- W4288730871 hasConcept C62520636 @default.
- W4288730871 hasConcept C71134354 @default.
- W4288730871 hasConcept C7218915 @default.
- W4288730871 hasConcept C74193536 @default.
- W4288730871 hasConcept C84894716 @default.
- W4288730871 hasConcept C86803240 @default.
- W4288730871 hasConceptScore W4288730871C102366305 @default.
- W4288730871 hasConceptScore W4288730871C104317684 @default.
- W4288730871 hasConceptScore W4288730871C105795698 @default.
- W4288730871 hasConceptScore W4288730871C117251300 @default.
- W4288730871 hasConceptScore W4288730871C118615104 @default.
- W4288730871 hasConceptScore W4288730871C121332964 @default.
- W4288730871 hasConceptScore W4288730871C122280245 @default.
- W4288730871 hasConceptScore W4288730871C12267149 @default.
- W4288730871 hasConceptScore W4288730871C126255220 @default.
- W4288730871 hasConceptScore W4288730871C143724316 @default.
- W4288730871 hasConceptScore W4288730871C151406439 @default.
- W4288730871 hasConceptScore W4288730871C151730666 @default.
- W4288730871 hasConceptScore W4288730871C154945302 @default.
- W4288730871 hasConceptScore W4288730871C163716315 @default.
- W4288730871 hasConceptScore W4288730871C185429906 @default.
- W4288730871 hasConceptScore W4288730871C185592680 @default.
- W4288730871 hasConceptScore W4288730871C195699287 @default.
- W4288730871 hasConceptScore W4288730871C200695384 @default.
- W4288730871 hasConceptScore W4288730871C204241405 @default.
- W4288730871 hasConceptScore W4288730871C24574437 @default.
- W4288730871 hasConceptScore W4288730871C28826006 @default.
- W4288730871 hasConceptScore W4288730871C33923547 @default.
- W4288730871 hasConceptScore W4288730871C41008148 @default.
- W4288730871 hasConceptScore W4288730871C55493867 @default.
- W4288730871 hasConceptScore W4288730871C62520636 @default.
- W4288730871 hasConceptScore W4288730871C71134354 @default.
- W4288730871 hasConceptScore W4288730871C7218915 @default.
- W4288730871 hasConceptScore W4288730871C74193536 @default.
- W4288730871 hasConceptScore W4288730871C84894716 @default.
- W4288730871 hasConceptScore W4288730871C86803240 @default.
- W4288730871 hasLocation W42887308711 @default.
- W4288730871 hasOpenAccess W4288730871 @default.
- W4288730871 hasPrimaryLocation W42887308711 @default.
- W4288730871 hasRelatedWork W122742822 @default.
- W4288730871 hasRelatedWork W1594974787 @default.