Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288734562> ?p ?o ?g. }
- W4288734562 endingPage "605" @default.
- W4288734562 startingPage "596" @default.
- W4288734562 abstract "ObjectiveMachine learning, deep learning, and artificial intelligence (AI) are terms that have made their way into nearly all areas of medicine. In the case of medical imaging, these methods have become the state of the art in nearly all areas from image reconstruction to image processing and automated analysis. In contrast to other areas, such as brain and breast imaging, the impacts of AI have not been as strongly felt in gynecologic imaging. In this review article, we: (i) provide a background of clinically relevant AI concepts, (ii) describe methods and approaches in computer vision, and (iii) highlight prior work related to image classification tasks utilizing AI approaches in gynecologic imaging.Data sourcesA comprehensive search of several databases from each database's inception to March 18th, 2021, English language, was conducted. The databases included Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, and Daily, Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, and Ovid Cochrane Database of Systematic Reviews and ClinicalTrials.gov.Methods of study selectionWe performed an extensive literature review with 61 articles curated by three reviewers and subsequent sorting by specialists using specific inclusion and exclusion criteria.Tabulation, integration, and resultsWe summarize the literature grouped by each of the three most common gynecologic malignancies: endometrial, cervical, and ovarian. For each, a brief introduction encapsulating the AI methods, imaging modalities, and clinical parameters in the selected articles is presented. We conclude with a discussion of current developments, trends and limitations, and suggest directions for future study.ConclusionThis review article should prove useful for collaborative teams performing research studies targeted at the incorporation of radiological imaging and AI methods into gynecological clinical practice." @default.
- W4288734562 created "2022-07-30" @default.
- W4288734562 creator A5016336723 @default.
- W4288734562 creator A5017863972 @default.
- W4288734562 creator A5022917298 @default.
- W4288734562 creator A5044542788 @default.
- W4288734562 creator A5053303391 @default.
- W4288734562 creator A5055231837 @default.
- W4288734562 creator A5057188833 @default.
- W4288734562 creator A5064922299 @default.
- W4288734562 creator A5067926686 @default.
- W4288734562 creator A5075505395 @default.
- W4288734562 creator A5082199732 @default.
- W4288734562 creator A5083700744 @default.
- W4288734562 creator A5089043882 @default.
- W4288734562 date "2022-09-01" @default.
- W4288734562 modified "2023-10-03" @default.
- W4288734562 title "A systematic review on the use of artificial intelligence in gynecologic imaging – Background, state of the art, and future directions" @default.
- W4288734562 cites W2618530766 @default.
- W4288734562 cites W2804297554 @default.
- W4288734562 cites W2885550086 @default.
- W4288734562 cites W2888082487 @default.
- W4288734562 cites W2898105257 @default.
- W4288734562 cites W2937929874 @default.
- W4288734562 cites W2938458914 @default.
- W4288734562 cites W2970612217 @default.
- W4288734562 cites W2980231344 @default.
- W4288734562 cites W2996945752 @default.
- W4288734562 cites W3004011406 @default.
- W4288734562 cites W3005252897 @default.
- W4288734562 cites W3006400781 @default.
- W4288734562 cites W3035201165 @default.
- W4288734562 cites W3041114535 @default.
- W4288734562 cites W3042625737 @default.
- W4288734562 cites W3045905132 @default.
- W4288734562 cites W3047272901 @default.
- W4288734562 cites W3047392322 @default.
- W4288734562 cites W3085275278 @default.
- W4288734562 cites W3088898555 @default.
- W4288734562 cites W3091185828 @default.
- W4288734562 cites W3092126195 @default.
- W4288734562 cites W3096898300 @default.
- W4288734562 cites W3099203862 @default.
- W4288734562 cites W3099345475 @default.
- W4288734562 cites W3107151355 @default.
- W4288734562 cites W3112217930 @default.
- W4288734562 cites W3113033270 @default.
- W4288734562 cites W3117530224 @default.
- W4288734562 cites W3118199528 @default.
- W4288734562 cites W3119005666 @default.
- W4288734562 cites W3119860550 @default.
- W4288734562 cites W3119911061 @default.
- W4288734562 cites W3122892426 @default.
- W4288734562 cites W3128646645 @default.
- W4288734562 cites W3128902953 @default.
- W4288734562 cites W3128934197 @default.
- W4288734562 cites W3128958754 @default.
- W4288734562 cites W3133120667 @default.
- W4288734562 doi "https://doi.org/10.1016/j.ygyno.2022.07.024" @default.
- W4288734562 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35914978" @default.
- W4288734562 hasPublicationYear "2022" @default.
- W4288734562 type Work @default.
- W4288734562 citedByCount "7" @default.
- W4288734562 countsByYear W42887345622023 @default.
- W4288734562 crossrefType "journal-article" @default.
- W4288734562 hasAuthorship W4288734562A5016336723 @default.
- W4288734562 hasAuthorship W4288734562A5017863972 @default.
- W4288734562 hasAuthorship W4288734562A5022917298 @default.
- W4288734562 hasAuthorship W4288734562A5044542788 @default.
- W4288734562 hasAuthorship W4288734562A5053303391 @default.
- W4288734562 hasAuthorship W4288734562A5055231837 @default.
- W4288734562 hasAuthorship W4288734562A5057188833 @default.
- W4288734562 hasAuthorship W4288734562A5064922299 @default.
- W4288734562 hasAuthorship W4288734562A5067926686 @default.
- W4288734562 hasAuthorship W4288734562A5075505395 @default.
- W4288734562 hasAuthorship W4288734562A5082199732 @default.
- W4288734562 hasAuthorship W4288734562A5083700744 @default.
- W4288734562 hasAuthorship W4288734562A5089043882 @default.
- W4288734562 hasConcept C121608353 @default.
- W4288734562 hasConcept C126322002 @default.
- W4288734562 hasConcept C144024400 @default.
- W4288734562 hasConcept C154945302 @default.
- W4288734562 hasConcept C17744445 @default.
- W4288734562 hasConcept C189708586 @default.
- W4288734562 hasConcept C19527891 @default.
- W4288734562 hasConcept C199539241 @default.
- W4288734562 hasConcept C2777432617 @default.
- W4288734562 hasConcept C2779473830 @default.
- W4288734562 hasConcept C2779903281 @default.
- W4288734562 hasConcept C2780472235 @default.
- W4288734562 hasConcept C36289849 @default.
- W4288734562 hasConcept C41008148 @default.
- W4288734562 hasConcept C530470458 @default.
- W4288734562 hasConcept C71924100 @default.
- W4288734562 hasConceptScore W4288734562C121608353 @default.
- W4288734562 hasConceptScore W4288734562C126322002 @default.
- W4288734562 hasConceptScore W4288734562C144024400 @default.
- W4288734562 hasConceptScore W4288734562C154945302 @default.