Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288748500> ?p ?o ?g. }
- W4288748500 endingPage "44" @default.
- W4288748500 startingPage "29" @default.
- W4288748500 abstract "Urbanization and population growth, as well as the movement of diverse vehicles on urban roadways, all contribute to excessive noise in the urban acoustic environment. Annoyance, cardiovascular disease, dementia, hypertension, stress, sleeping problem, irritation, hair-fall, headache, are the most common reported problems due to traffic noise exposure. The “Structural Equation Modeling–Artificial Neural Network Model” was used in the current study to predict traffic noise induced annoyance among 100 vendors whose shops are located from Khandagiri to Baramunda along the National Highway 16 of the smart city Bhubaneswar Odisha. Due to the movement of large number of heavy vehicles as well as medium and light weight vehicles, these roadways remain noisy throughout the day. Moreover, the annoyance questionnaire was developed in compliance with ISO/TS 15666 criteria for assessing annoyance level. The combination of SEM and ANN is rarely seen in acoustics, especially in noise studies. However, in this study, both SEM and ANN are used to predict annoyance using various noise indices. Moreover, the SEM model revealed a significant association between “Equivalent Noise Level” (Leq) and annoyance (p-value = 0.031), “Minimum Noise Level” (LMin) and annoyance (p-value = 0.049), “Background Noise Level” (L90) and annoyance (p-value = 0.047), “Noise Pollution Level” (NPL) and annoyance (p-value = 0.038). These associations indicate that Leq, LMin, L90 and NPL have a significant effect on annoyance. Furthermore, the PLS algorithm output from the measurement model verified a 47 percent variance in annoyance level. The ANN model confirmed that NPL is the most significant predictor of noise annoyance, followed by LMin, Leq, and L90. Moreover, the ANN model can predict annoyance with an accuracy of 68.5 percent." @default.
- W4288748500 created "2022-07-30" @default.
- W4288748500 creator A5037068256 @default.
- W4288748500 creator A5061873880 @default.
- W4288748500 creator A5080278580 @default.
- W4288748500 date "2022-07-30" @default.
- W4288748500 modified "2023-09-23" @default.
- W4288748500 title "Prediction of traffic noise induced annoyance of vendors through noise indices using structural equation modeling: Artificial neural network model" @default.
- W4288748500 cites W1591040075 @default.
- W4288748500 cites W1971234322 @default.
- W4288748500 cites W1972458078 @default.
- W4288748500 cites W1976325702 @default.
- W4288748500 cites W1988811204 @default.
- W4288748500 cites W2003443441 @default.
- W4288748500 cites W2006525771 @default.
- W4288748500 cites W2041467624 @default.
- W4288748500 cites W2055090745 @default.
- W4288748500 cites W2061521761 @default.
- W4288748500 cites W2066275299 @default.
- W4288748500 cites W2072065487 @default.
- W4288748500 cites W2072500831 @default.
- W4288748500 cites W2075396823 @default.
- W4288748500 cites W2075913921 @default.
- W4288748500 cites W2084357772 @default.
- W4288748500 cites W2093359082 @default.
- W4288748500 cites W2121499534 @default.
- W4288748500 cites W2122637816 @default.
- W4288748500 cites W2124424292 @default.
- W4288748500 cites W2135572158 @default.
- W4288748500 cites W2137934499 @default.
- W4288748500 cites W2186049283 @default.
- W4288748500 cites W2345484477 @default.
- W4288748500 cites W2398764151 @default.
- W4288748500 cites W2420831331 @default.
- W4288748500 cites W2482777952 @default.
- W4288748500 cites W2490107957 @default.
- W4288748500 cites W2546850717 @default.
- W4288748500 cites W2561131998 @default.
- W4288748500 cites W2563944854 @default.
- W4288748500 cites W2672600453 @default.
- W4288748500 cites W2789727163 @default.
- W4288748500 cites W2807432290 @default.
- W4288748500 cites W2810357891 @default.
- W4288748500 cites W2897164504 @default.
- W4288748500 cites W2923682519 @default.
- W4288748500 cites W2978631110 @default.
- W4288748500 cites W2992667364 @default.
- W4288748500 cites W3043727646 @default.
- W4288748500 cites W3089220145 @default.
- W4288748500 cites W3123965437 @default.
- W4288748500 cites W3134360774 @default.
- W4288748500 cites W3184426157 @default.
- W4288748500 cites W3201937855 @default.
- W4288748500 doi "https://doi.org/10.1002/tqem.21905" @default.
- W4288748500 hasPublicationYear "2022" @default.
- W4288748500 type Work @default.
- W4288748500 citedByCount "2" @default.
- W4288748500 countsByYear W42887485002022 @default.
- W4288748500 countsByYear W42887485002023 @default.
- W4288748500 crossrefType "journal-article" @default.
- W4288748500 hasAuthorship W4288748500A5037068256 @default.
- W4288748500 hasAuthorship W4288748500A5061873880 @default.
- W4288748500 hasAuthorship W4288748500A5080278580 @default.
- W4288748500 hasConcept C105795698 @default.
- W4288748500 hasConcept C115961682 @default.
- W4288748500 hasConcept C116822448 @default.
- W4288748500 hasConcept C121332964 @default.
- W4288748500 hasConcept C127413603 @default.
- W4288748500 hasConcept C130858481 @default.
- W4288748500 hasConcept C154945302 @default.
- W4288748500 hasConcept C163294075 @default.
- W4288748500 hasConcept C178937217 @default.
- W4288748500 hasConcept C24890656 @default.
- W4288748500 hasConcept C2781353297 @default.
- W4288748500 hasConcept C33923547 @default.
- W4288748500 hasConcept C39432304 @default.
- W4288748500 hasConcept C41008148 @default.
- W4288748500 hasConcept C71104824 @default.
- W4288748500 hasConcept C79018884 @default.
- W4288748500 hasConcept C99498987 @default.
- W4288748500 hasConceptScore W4288748500C105795698 @default.
- W4288748500 hasConceptScore W4288748500C115961682 @default.
- W4288748500 hasConceptScore W4288748500C116822448 @default.
- W4288748500 hasConceptScore W4288748500C121332964 @default.
- W4288748500 hasConceptScore W4288748500C127413603 @default.
- W4288748500 hasConceptScore W4288748500C130858481 @default.
- W4288748500 hasConceptScore W4288748500C154945302 @default.
- W4288748500 hasConceptScore W4288748500C163294075 @default.
- W4288748500 hasConceptScore W4288748500C178937217 @default.
- W4288748500 hasConceptScore W4288748500C24890656 @default.
- W4288748500 hasConceptScore W4288748500C2781353297 @default.
- W4288748500 hasConceptScore W4288748500C33923547 @default.
- W4288748500 hasConceptScore W4288748500C39432304 @default.
- W4288748500 hasConceptScore W4288748500C41008148 @default.
- W4288748500 hasConceptScore W4288748500C71104824 @default.
- W4288748500 hasConceptScore W4288748500C79018884 @default.
- W4288748500 hasConceptScore W4288748500C99498987 @default.
- W4288748500 hasIssue "2" @default.