Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288754561> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4288754561 abstract "Oil and gas resources are important strategic materials and economic resources. With the increase of pipeline mechanical failure caused by external stress changes have occurred frequently. Among them, mechanical failure and corrosion failure can cause pipeline rupture, explosion, property loss, and casualties. Casualties caused by pipeline damage account for 22% to 67% of total casualties. Therefore, it is particularly important to conduct safety inspections on pipelines. At present, there are many pipeline damage detection technologies. Just like pipeline magnetic flux leakage (MFL) detection technology is widely used, which has the advantages of fast speed and high efficiency and is suitable for defect detection of ferromagnetic metal material of pipeline. However, most pipelines are located in harsh outdoor environments, and there are various corrosion and mechanical damage defects, including axial damage and circumferential damage, resulting in large differences in magnetic leakage signals. Meanwhile, there are various interferenoes in the signal, so the current methods have low accuracy in the diagnosis and prediction of defects, and the recognition accuracy is maintained at about 86%. So, the neural network algorithm is designed to identify and analyze the inspection signal. Through the use of a multi-layer neural network for training and learning, the recognition accuracy and reliability of pipeline defects are improved. The main contributions are as follows: Firstly, the mechanism of MFL detection of pipeline defects is introduced. Through theoretical analysis, it is known that the change of lift value in the device will affect the change of MFL intensity, and an experimental device is built to complete pipeline defect detection and signal collection. Secondly, VMD algorithm is used to complete the preprocessing of pipeline magnetic flux leakage signal, and the processed data is smooth and stable without over envelope and under envelope and so on. Finally, an improved convolutional neural network structure (I-CNN) is studied. And the Dropout layer is inserted into the network structure of the convolutional neural network to optimize the algorithm. The simulation results show that the recognition accuracy of I-CNN algorithm is 99.19%, improved by 15.7%. Meanwhile, the test recognition of the I-CNN algorithm is performed on 300 sets of data signals, and the recognition accuracy is lower than the training accuracy, with a recognition test accuracy of 97.38%, but also higher than that of the CNN algorithm. Here, the method not only reduces the labor intensity and human error of manual labeling but also improves the accuracy of the network and the generalization ability of recognition learning." @default.
- W4288754561 created "2022-07-30" @default.
- W4288754561 creator A5025365598 @default.
- W4288754561 creator A5032218235 @default.
- W4288754561 creator A5064871720 @default.
- W4288754561 creator A5065200254 @default.
- W4288754561 creator A5073947907 @default.
- W4288754561 date "2022-06-22" @default.
- W4288754561 modified "2023-09-26" @default.
- W4288754561 title "Diagnosis and Recognition of Pipeline Damage Defects Based on Improved Convolutional Neural Network" @default.
- W4288754561 doi "https://doi.org/10.1109/icces54183.2022.9835891" @default.
- W4288754561 hasPublicationYear "2022" @default.
- W4288754561 type Work @default.
- W4288754561 citedByCount "1" @default.
- W4288754561 countsByYear W42887545612023 @default.
- W4288754561 crossrefType "proceedings-article" @default.
- W4288754561 hasAuthorship W4288754561A5025365598 @default.
- W4288754561 hasAuthorship W4288754561A5032218235 @default.
- W4288754561 hasAuthorship W4288754561A5064871720 @default.
- W4288754561 hasAuthorship W4288754561A5065200254 @default.
- W4288754561 hasAuthorship W4288754561A5073947907 @default.
- W4288754561 hasConcept C119599485 @default.
- W4288754561 hasConcept C121332964 @default.
- W4288754561 hasConcept C127413603 @default.
- W4288754561 hasConcept C139719470 @default.
- W4288754561 hasConcept C154945302 @default.
- W4288754561 hasConcept C159985019 @default.
- W4288754561 hasConcept C162324750 @default.
- W4288754561 hasConcept C163258240 @default.
- W4288754561 hasConcept C175309249 @default.
- W4288754561 hasConcept C192562407 @default.
- W4288754561 hasConcept C199360897 @default.
- W4288754561 hasConcept C20625102 @default.
- W4288754561 hasConcept C20892748 @default.
- W4288754561 hasConcept C2777042071 @default.
- W4288754561 hasConcept C2779843651 @default.
- W4288754561 hasConcept C30403606 @default.
- W4288754561 hasConcept C41008148 @default.
- W4288754561 hasConcept C43214815 @default.
- W4288754561 hasConcept C43521106 @default.
- W4288754561 hasConcept C50644808 @default.
- W4288754561 hasConcept C62520636 @default.
- W4288754561 hasConcept C66938386 @default.
- W4288754561 hasConcept C78519656 @default.
- W4288754561 hasConcept C81363708 @default.
- W4288754561 hasConceptScore W4288754561C119599485 @default.
- W4288754561 hasConceptScore W4288754561C121332964 @default.
- W4288754561 hasConceptScore W4288754561C127413603 @default.
- W4288754561 hasConceptScore W4288754561C139719470 @default.
- W4288754561 hasConceptScore W4288754561C154945302 @default.
- W4288754561 hasConceptScore W4288754561C159985019 @default.
- W4288754561 hasConceptScore W4288754561C162324750 @default.
- W4288754561 hasConceptScore W4288754561C163258240 @default.
- W4288754561 hasConceptScore W4288754561C175309249 @default.
- W4288754561 hasConceptScore W4288754561C192562407 @default.
- W4288754561 hasConceptScore W4288754561C199360897 @default.
- W4288754561 hasConceptScore W4288754561C20625102 @default.
- W4288754561 hasConceptScore W4288754561C20892748 @default.
- W4288754561 hasConceptScore W4288754561C2777042071 @default.
- W4288754561 hasConceptScore W4288754561C2779843651 @default.
- W4288754561 hasConceptScore W4288754561C30403606 @default.
- W4288754561 hasConceptScore W4288754561C41008148 @default.
- W4288754561 hasConceptScore W4288754561C43214815 @default.
- W4288754561 hasConceptScore W4288754561C43521106 @default.
- W4288754561 hasConceptScore W4288754561C50644808 @default.
- W4288754561 hasConceptScore W4288754561C62520636 @default.
- W4288754561 hasConceptScore W4288754561C66938386 @default.
- W4288754561 hasConceptScore W4288754561C78519656 @default.
- W4288754561 hasConceptScore W4288754561C81363708 @default.
- W4288754561 hasLocation W42887545611 @default.
- W4288754561 hasOpenAccess W4288754561 @default.
- W4288754561 hasPrimaryLocation W42887545611 @default.
- W4288754561 hasRelatedWork W1974316628 @default.
- W4288754561 hasRelatedWork W1984327814 @default.
- W4288754561 hasRelatedWork W2358586775 @default.
- W4288754561 hasRelatedWork W2394094657 @default.
- W4288754561 hasRelatedWork W2530037178 @default.
- W4288754561 hasRelatedWork W2899084033 @default.
- W4288754561 hasRelatedWork W2934149206 @default.
- W4288754561 hasRelatedWork W2934882904 @default.
- W4288754561 hasRelatedWork W2948568013 @default.
- W4288754561 hasRelatedWork W4311461998 @default.
- W4288754561 isParatext "false" @default.
- W4288754561 isRetracted "false" @default.
- W4288754561 workType "article" @default.