Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288758399> ?p ?o ?g. }
- W4288758399 abstract "Evaporation is the primary aspect causing water loss in the hydrological cycle; therefore, water loss must be precisely measured. Evaporation is an intricate nonlinear process occurring as a result of several climatic aspects. The purpose of this research is to assess the feasibility of using Random Forest (RF) and two deep learning techniques, namely convolutional neural network (CNN), and deep neural network (DNN) to accurately estimate monthly pan evaporation rates. Month-based weather data gathered from four Malaysian weather stations during the 2000-2019 timeframe was used to train and evaluate the models. Several input attributes (predictor variables) were investigated to select the most suitable variables for machine learning models. Every approach was tested with several models, each with a different set of model aspects and input parameter combinations. The formulated ML approaches were benchmarked against two commonly used empirical methods: Stephens & Stewart and Thornthwaite. Model outcomes were assessed using standard statistical measures to determine their effectiveness in predicting evaporation. The results indicated that the three ML models developed in the study performed better than empirical models and could significantly improve the precision of monthly Ep estimates even with the identical input sets. The performance assessment metrics also show that the formulated CNN approach was acceptable for modelling monthly water loss due to evaporation with a higher degree of accuracy than other ML frameworks explored in this study. In addition, the CNN framework outperformed other AI techniques evaluated for the same areas using identical data inputs. The investigation's findings in relation to the various performance criteria show that the proposed CNN model is capable of capturing the highly non-linearity of evaporation and could be regarded as an effective tool to predict evaporation." @default.
- W4288758399 created "2022-07-30" @default.
- W4288758399 creator A5010789167 @default.
- W4288758399 creator A5054690286 @default.
- W4288758399 creator A5061489122 @default.
- W4288758399 creator A5081710674 @default.
- W4288758399 date "2022-07-30" @default.
- W4288758399 modified "2023-10-18" @default.
- W4288758399 title "Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms" @default.
- W4288758399 cites W1740585449 @default.
- W4288758399 cites W1975336843 @default.
- W4288758399 cites W1985479415 @default.
- W4288758399 cites W1998653681 @default.
- W4288758399 cites W2002115844 @default.
- W4288758399 cites W2010876855 @default.
- W4288758399 cites W2018669430 @default.
- W4288758399 cites W2029719981 @default.
- W4288758399 cites W2043360138 @default.
- W4288758399 cites W2046794274 @default.
- W4288758399 cites W2046863487 @default.
- W4288758399 cites W2055107850 @default.
- W4288758399 cites W2061819166 @default.
- W4288758399 cites W2107407839 @default.
- W4288758399 cites W2112796928 @default.
- W4288758399 cites W2115322028 @default.
- W4288758399 cites W2117692137 @default.
- W4288758399 cites W2133642590 @default.
- W4288758399 cites W2146096861 @default.
- W4288758399 cites W2149670839 @default.
- W4288758399 cites W2152236704 @default.
- W4288758399 cites W2164822039 @default.
- W4288758399 cites W2170326071 @default.
- W4288758399 cites W2177959459 @default.
- W4288758399 cites W2181201162 @default.
- W4288758399 cites W2397130888 @default.
- W4288758399 cites W2429948132 @default.
- W4288758399 cites W2527066115 @default.
- W4288758399 cites W2551393996 @default.
- W4288758399 cites W2558918493 @default.
- W4288758399 cites W2573587735 @default.
- W4288758399 cites W2618530766 @default.
- W4288758399 cites W2729015950 @default.
- W4288758399 cites W2733867881 @default.
- W4288758399 cites W2749106749 @default.
- W4288758399 cites W2767745631 @default.
- W4288758399 cites W2767864371 @default.
- W4288758399 cites W2769950239 @default.
- W4288758399 cites W2780554042 @default.
- W4288758399 cites W2783988277 @default.
- W4288758399 cites W2832290903 @default.
- W4288758399 cites W2882203834 @default.
- W4288758399 cites W2883112011 @default.
- W4288758399 cites W2889246260 @default.
- W4288758399 cites W2897257904 @default.
- W4288758399 cites W2902125084 @default.
- W4288758399 cites W2911964244 @default.
- W4288758399 cites W2919115771 @default.
- W4288758399 cites W2922056388 @default.
- W4288758399 cites W2924797626 @default.
- W4288758399 cites W2951795444 @default.
- W4288758399 cites W2962949934 @default.
- W4288758399 cites W2963654998 @default.
- W4288758399 cites W2965191834 @default.
- W4288758399 cites W2978591474 @default.
- W4288758399 cites W2991192488 @default.
- W4288758399 cites W3045936300 @default.
- W4288758399 cites W3105127913 @default.
- W4288758399 cites W3136420364 @default.
- W4288758399 cites W3207848089 @default.
- W4288758399 cites W4214933795 @default.
- W4288758399 cites W4241889984 @default.
- W4288758399 cites W588320544 @default.
- W4288758399 doi "https://doi.org/10.1038/s41598-022-17263-3" @default.
- W4288758399 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35908080" @default.
- W4288758399 hasPublicationYear "2022" @default.
- W4288758399 type Work @default.
- W4288758399 citedByCount "18" @default.
- W4288758399 countsByYear W42887583992022 @default.
- W4288758399 countsByYear W42887583992023 @default.
- W4288758399 crossrefType "journal-article" @default.
- W4288758399 hasAuthorship W4288758399A5010789167 @default.
- W4288758399 hasAuthorship W4288758399A5054690286 @default.
- W4288758399 hasAuthorship W4288758399A5061489122 @default.
- W4288758399 hasAuthorship W4288758399A5081710674 @default.
- W4288758399 hasBestOaLocation W42887583991 @default.
- W4288758399 hasConcept C108583219 @default.
- W4288758399 hasConcept C111919701 @default.
- W4288758399 hasConcept C11413529 @default.
- W4288758399 hasConcept C119857082 @default.
- W4288758399 hasConcept C121332964 @default.
- W4288758399 hasConcept C124101348 @default.
- W4288758399 hasConcept C133199616 @default.
- W4288758399 hasConcept C134306372 @default.
- W4288758399 hasConcept C153294291 @default.
- W4288758399 hasConcept C154945302 @default.
- W4288758399 hasConcept C169258074 @default.
- W4288758399 hasConcept C177264268 @default.
- W4288758399 hasConcept C182365436 @default.
- W4288758399 hasConcept C199360897 @default.
- W4288758399 hasConcept C23430798 @default.