Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288759975> ?p ?o ?g. }
- W4288759975 endingPage "107587" @default.
- W4288759975 startingPage "107587" @default.
- W4288759975 abstract "• A resonant cantilevered micro-plate is proved to be a promising candidate that can sequentially detect multiple particles. • The identification of multiple particles is regarded as an optimization problem via genetic algorithm to replace the widely-used least squares method. • Better identification accuracy is illustrated by exquisitely updating the modal shape changes of a micro-plate after each particle adsorption. • An experimental strategy based on focused ion beam and scanning probe microscopy verifies the applicability of the theoretic framework in designing and evaluating micro/nano sensors. The detection of multiple particles has been mainly studied by examining the flexural vibration properties of a one-dimensional Euler-Bernoulli beam under the assumption that the vibration mode shapes are unchanged. In fact, with the torsional vibration of the detector, valuable pieces of information can be derived, while the detection process is facilitated. Besides, the mode shapes of the detector can be easily changed by measuring multiple adsorbates or heavy analytes, which can fundamentally affect the detecting accuracy. To the best of our knowledge, these two issues have not yet been systematically considered in the literature. Along these lines, in this work, a theoretical framework is introduced to detect both the masses and positions of multiple particles absorbed on a two-dimensional micro-plate, where the history of the mass deposition events is sequentially measured from the recorded frequency shifts. The detection of multiple particles was realized by using an optimization process via the genetic algorithm, which circumvents the initial value and the local optimum problems that the widely-used least-squares method could be confronted with. In addition, an improved detection accuracy was ensured by exquisitely updating the modal shape changes of a micro-plate after the adsorption of each particle. To validate the proposed method, the frequency shifts were obtained by running modal analysis, where 20 μ concentrated masses were added sequentially on the top surface of the micro-plate modelling. As was expected, all particles could be effectively identified with enhanced accuracy. Furthermore, experimental validation was performed on Si-based micro-plates cantilevered, which were fabricated by focused ion beam milling and sequentially loaded by carrying out Pt depositions from the measured frequency shifts of the micro-plate structure before and after each sequential Pt deposition, the loaded masses and their positions in both the length and width directions were extracted. The results obtained from the model are in good agreement with the estimation based on scanning electron microscopy. The proposed method is anticipated to be further applied to multiple particle detection applications in many fields including biology, medicine and chemistry." @default.
- W4288759975 created "2022-07-30" @default.
- W4288759975 creator A5044301848 @default.
- W4288759975 creator A5045435869 @default.
- W4288759975 creator A5054856233 @default.
- W4288759975 creator A5059051894 @default.
- W4288759975 creator A5069753768 @default.
- W4288759975 creator A5080102032 @default.
- W4288759975 creator A5087349934 @default.
- W4288759975 creator A5089753782 @default.
- W4288759975 date "2022-10-01" @default.
- W4288759975 modified "2023-10-16" @default.
- W4288759975 title "Multiple particle identification by sequential frequency-shift measurement of a micro-plate" @default.
- W4288759975 cites W1564751782 @default.
- W4288759975 cites W1583818528 @default.
- W4288759975 cites W1810702366 @default.
- W4288759975 cites W1889820893 @default.
- W4288759975 cites W1983910981 @default.
- W4288759975 cites W2000491109 @default.
- W4288759975 cites W2015275640 @default.
- W4288759975 cites W2018758422 @default.
- W4288759975 cites W2018886977 @default.
- W4288759975 cites W2019054053 @default.
- W4288759975 cites W2022109498 @default.
- W4288759975 cites W2023980307 @default.
- W4288759975 cites W2024509268 @default.
- W4288759975 cites W2033677347 @default.
- W4288759975 cites W2040931559 @default.
- W4288759975 cites W2043416085 @default.
- W4288759975 cites W2053584594 @default.
- W4288759975 cites W2054040509 @default.
- W4288759975 cites W2061836252 @default.
- W4288759975 cites W2068935998 @default.
- W4288759975 cites W2069161545 @default.
- W4288759975 cites W2075583507 @default.
- W4288759975 cites W2077000920 @default.
- W4288759975 cites W2077125422 @default.
- W4288759975 cites W2077831477 @default.
- W4288759975 cites W2125487428 @default.
- W4288759975 cites W2141916646 @default.
- W4288759975 cites W2172912006 @default.
- W4288759975 cites W2313708135 @default.
- W4288759975 cites W2476132539 @default.
- W4288759975 cites W2479226760 @default.
- W4288759975 cites W2528984657 @default.
- W4288759975 cites W2590180695 @default.
- W4288759975 cites W2765080663 @default.
- W4288759975 cites W2784698292 @default.
- W4288759975 cites W2790629141 @default.
- W4288759975 cites W2801917316 @default.
- W4288759975 cites W2889161566 @default.
- W4288759975 cites W2894344611 @default.
- W4288759975 cites W2906447292 @default.
- W4288759975 cites W2911778295 @default.
- W4288759975 cites W2912660308 @default.
- W4288759975 cites W2921648133 @default.
- W4288759975 cites W2923354751 @default.
- W4288759975 cites W2947633158 @default.
- W4288759975 cites W2955708888 @default.
- W4288759975 cites W2998573981 @default.
- W4288759975 cites W3002994430 @default.
- W4288759975 cites W3038739188 @default.
- W4288759975 cites W3044717883 @default.
- W4288759975 cites W3046723618 @default.
- W4288759975 cites W3080360350 @default.
- W4288759975 cites W3088744953 @default.
- W4288759975 cites W3092204045 @default.
- W4288759975 cites W3094704314 @default.
- W4288759975 cites W3096246954 @default.
- W4288759975 cites W3099150585 @default.
- W4288759975 cites W3103012704 @default.
- W4288759975 cites W3111318898 @default.
- W4288759975 cites W3118511128 @default.
- W4288759975 cites W3128296487 @default.
- W4288759975 cites W3134508535 @default.
- W4288759975 cites W3167816533 @default.
- W4288759975 cites W3170027925 @default.
- W4288759975 cites W3184417659 @default.
- W4288759975 cites W3198718717 @default.
- W4288759975 cites W3205619345 @default.
- W4288759975 cites W3214152795 @default.
- W4288759975 cites W4200209692 @default.
- W4288759975 cites W4206378640 @default.
- W4288759975 cites W4214912899 @default.
- W4288759975 cites W4214944180 @default.
- W4288759975 cites W4234009147 @default.
- W4288759975 doi "https://doi.org/10.1016/j.ijmecsci.2022.107587" @default.
- W4288759975 hasPublicationYear "2022" @default.
- W4288759975 type Work @default.
- W4288759975 citedByCount "3" @default.
- W4288759975 countsByYear W42887599752023 @default.
- W4288759975 crossrefType "journal-article" @default.
- W4288759975 hasAuthorship W4288759975A5044301848 @default.
- W4288759975 hasAuthorship W4288759975A5045435869 @default.
- W4288759975 hasAuthorship W4288759975A5054856233 @default.
- W4288759975 hasAuthorship W4288759975A5059051894 @default.
- W4288759975 hasAuthorship W4288759975A5069753768 @default.
- W4288759975 hasAuthorship W4288759975A5080102032 @default.