Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288760315> ?p ?o ?g. }
- W4288760315 endingPage "169731" @default.
- W4288760315 startingPage "169731" @default.
- W4288760315 abstract "Precise estimation of the parameter values of solar models is very essential for optimization of solar systems. Many studies that use metaheuristic algorithms have recently been proposed for parameter estimation and optimization in photovoltaic models. In this study, it is aimed to enhance convergence performance in photovoltaic systems by scanning the search space using two improved versions of the honey badger algorithm. First, the Gauss/Mouse map-based chaotic honey badger algorithm has been considered motivating by the fact that chaotic maps are successful in controlling critical random values in exploration and exploitation phases. The other algorithm is based on hybridization of opposition based learning with honey badger algorithm. Opposition based learning has efficient convergence capability as it scans the search space using opposites of candidate solutions. The performances of these improved methods and recent metaheuristic optimization algorithms are firstly evaluated for CEC2017 and CEC2019 datasets. After obtaining the successful results for these datasets, proposed algorithms are compared for single-diode, double diode and photovoltaic module models which are given as poly-crystalline Photowatt-PWP201, mono-crystalline STM6-40/36, and poly-crystalline STP6-120/36. For each model, optimum parameter values are found minimizing the root-mean-square-error. In addition, three commercial PV panels; Mono-crystaline SM55, Thin-film ST40, and Multi-crystalline KC200GT are also considered for performance evaluation. According to simulation results, proposed algorithm exhibits high performance in terms of minimization of root mean square error. The compliance of estimated and actual values of the parameters are visualized with current–voltage (I–V) and power–voltage (P–V) characteristics. The results show that the proposed methods are effective alternatives for solution of photovoltaic parameter estimation problem and contribute to the parameter optimization of photovoltaic models." @default.
- W4288760315 created "2022-07-30" @default.
- W4288760315 creator A5014098147 @default.
- W4288760315 creator A5064440353 @default.
- W4288760315 creator A5070687642 @default.
- W4288760315 date "2022-10-01" @default.
- W4288760315 modified "2023-10-18" @default.
- W4288760315 title "Improved honey badger algorithms for parameter extraction in photovoltaic models" @default.
- W4288760315 cites W1980583028 @default.
- W4288760315 cites W1985147356 @default.
- W4288760315 cites W2012115555 @default.
- W4288760315 cites W2016944307 @default.
- W4288760315 cites W2061438946 @default.
- W4288760315 cites W2102660738 @default.
- W4288760315 cites W2170942875 @default.
- W4288760315 cites W2302591517 @default.
- W4288760315 cites W2509515955 @default.
- W4288760315 cites W2613613071 @default.
- W4288760315 cites W2732330057 @default.
- W4288760315 cites W2760572903 @default.
- W4288760315 cites W2767238173 @default.
- W4288760315 cites W2777872162 @default.
- W4288760315 cites W2799755495 @default.
- W4288760315 cites W2895245271 @default.
- W4288760315 cites W2909889369 @default.
- W4288760315 cites W2944064728 @default.
- W4288760315 cites W2947525988 @default.
- W4288760315 cites W2969625972 @default.
- W4288760315 cites W2985975201 @default.
- W4288760315 cites W3000678747 @default.
- W4288760315 cites W3007722413 @default.
- W4288760315 cites W3014646052 @default.
- W4288760315 cites W3014974411 @default.
- W4288760315 cites W3021348825 @default.
- W4288760315 cites W3022697647 @default.
- W4288760315 cites W3028948656 @default.
- W4288760315 cites W3048739668 @default.
- W4288760315 cites W3129127980 @default.
- W4288760315 cites W3134651880 @default.
- W4288760315 cites W3142181422 @default.
- W4288760315 cites W3156296024 @default.
- W4288760315 cites W3158328968 @default.
- W4288760315 cites W3163287852 @default.
- W4288760315 cites W3163423574 @default.
- W4288760315 cites W3163903840 @default.
- W4288760315 cites W3175793130 @default.
- W4288760315 cites W3181251094 @default.
- W4288760315 cites W3185076117 @default.
- W4288760315 cites W3196661916 @default.
- W4288760315 cites W4214502311 @default.
- W4288760315 cites W4281756702 @default.
- W4288760315 cites W659097678 @default.
- W4288760315 cites W883434633 @default.
- W4288760315 doi "https://doi.org/10.1016/j.ijleo.2022.169731" @default.
- W4288760315 hasPublicationYear "2022" @default.
- W4288760315 type Work @default.
- W4288760315 citedByCount "12" @default.
- W4288760315 countsByYear W42887603152022 @default.
- W4288760315 countsByYear W42887603152023 @default.
- W4288760315 crossrefType "journal-article" @default.
- W4288760315 hasAuthorship W4288760315A5014098147 @default.
- W4288760315 hasAuthorship W4288760315A5064440353 @default.
- W4288760315 hasAuthorship W4288760315A5070687642 @default.
- W4288760315 hasConcept C105795698 @default.
- W4288760315 hasConcept C109718341 @default.
- W4288760315 hasConcept C11413529 @default.
- W4288760315 hasConcept C119599485 @default.
- W4288760315 hasConcept C126255220 @default.
- W4288760315 hasConcept C127413603 @default.
- W4288760315 hasConcept C139945424 @default.
- W4288760315 hasConcept C154945302 @default.
- W4288760315 hasConcept C162324750 @default.
- W4288760315 hasConcept C2777052490 @default.
- W4288760315 hasConcept C2777303404 @default.
- W4288760315 hasConcept C33923547 @default.
- W4288760315 hasConcept C41008148 @default.
- W4288760315 hasConcept C41291067 @default.
- W4288760315 hasConcept C50522688 @default.
- W4288760315 hasConcept C5351157 @default.
- W4288760315 hasConcept C85617194 @default.
- W4288760315 hasConceptScore W4288760315C105795698 @default.
- W4288760315 hasConceptScore W4288760315C109718341 @default.
- W4288760315 hasConceptScore W4288760315C11413529 @default.
- W4288760315 hasConceptScore W4288760315C119599485 @default.
- W4288760315 hasConceptScore W4288760315C126255220 @default.
- W4288760315 hasConceptScore W4288760315C127413603 @default.
- W4288760315 hasConceptScore W4288760315C139945424 @default.
- W4288760315 hasConceptScore W4288760315C154945302 @default.
- W4288760315 hasConceptScore W4288760315C162324750 @default.
- W4288760315 hasConceptScore W4288760315C2777052490 @default.
- W4288760315 hasConceptScore W4288760315C2777303404 @default.
- W4288760315 hasConceptScore W4288760315C33923547 @default.
- W4288760315 hasConceptScore W4288760315C41008148 @default.
- W4288760315 hasConceptScore W4288760315C41291067 @default.
- W4288760315 hasConceptScore W4288760315C50522688 @default.
- W4288760315 hasConceptScore W4288760315C5351157 @default.
- W4288760315 hasConceptScore W4288760315C85617194 @default.
- W4288760315 hasLocation W42887603151 @default.