Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288772854> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4288772854 endingPage "5958" @default.
- W4288772854 startingPage "5948" @default.
- W4288772854 abstract "Deep learning-based methods have been developed and widely used for fault diagnosis, which rely on the sufficient data. However, fault data are extremely limited in some real-case scenarios. In this article, a meta-learning with adaptive learning rates (MLALR) method is proposed for few-shot fault diagnosis. MLALR learns from auxiliary tasks to find initialization parameters of the model that can adapt to target tasks with a few data. The keys of MLALR are the proposed adaptive learning rates for meta-training and fine-tuning, whose values are adjusted according to the distributions of extracted features to tackle the two common problems of few-shot learning, i.e., overfitting and underfitting. The loss functions are further improved to promote the model generalization capability and training stability. The effectiveness of the proposed method is validated using two bearing datasets. MLALR obtains higher accuracies and stabilities than the baseline methods and three other state-of-the-art methods." @default.
- W4288772854 created "2022-07-30" @default.
- W4288772854 creator A5070851320 @default.
- W4288772854 creator A5074751016 @default.
- W4288772854 date "2022-12-01" @default.
- W4288772854 modified "2023-10-14" @default.
- W4288772854 title "Meta-Learning With Adaptive Learning Rates for Few-Shot Fault Diagnosis" @default.
- W4288772854 cites W1981494355 @default.
- W4288772854 cites W2019505419 @default.
- W4288772854 cites W2140804329 @default.
- W4288772854 cites W2789515102 @default.
- W4288772854 cites W2893747136 @default.
- W4288772854 cites W2902985761 @default.
- W4288772854 cites W2907541186 @default.
- W4288772854 cites W2940589124 @default.
- W4288772854 cites W2967115638 @default.
- W4288772854 cites W2979865603 @default.
- W4288772854 cites W2983088808 @default.
- W4288772854 cites W3041070623 @default.
- W4288772854 cites W3041076719 @default.
- W4288772854 cites W3089183752 @default.
- W4288772854 cites W3092220018 @default.
- W4288772854 cites W3113371083 @default.
- W4288772854 cites W3117515147 @default.
- W4288772854 cites W3119853956 @default.
- W4288772854 cites W3126446664 @default.
- W4288772854 cites W3128553897 @default.
- W4288772854 cites W3137410503 @default.
- W4288772854 cites W3174485934 @default.
- W4288772854 cites W3176033894 @default.
- W4288772854 cites W3200647619 @default.
- W4288772854 doi "https://doi.org/10.1109/tmech.2022.3192122" @default.
- W4288772854 hasPublicationYear "2022" @default.
- W4288772854 type Work @default.
- W4288772854 citedByCount "7" @default.
- W4288772854 countsByYear W42887728542023 @default.
- W4288772854 crossrefType "journal-article" @default.
- W4288772854 hasAuthorship W4288772854A5070851320 @default.
- W4288772854 hasAuthorship W4288772854A5074751016 @default.
- W4288772854 hasConcept C108583219 @default.
- W4288772854 hasConcept C112972136 @default.
- W4288772854 hasConcept C114466953 @default.
- W4288772854 hasConcept C119857082 @default.
- W4288772854 hasConcept C127313418 @default.
- W4288772854 hasConcept C127413603 @default.
- W4288772854 hasConcept C134306372 @default.
- W4288772854 hasConcept C153180895 @default.
- W4288772854 hasConcept C154945302 @default.
- W4288772854 hasConcept C165205528 @default.
- W4288772854 hasConcept C175551986 @default.
- W4288772854 hasConcept C177148314 @default.
- W4288772854 hasConcept C199360897 @default.
- W4288772854 hasConcept C201995342 @default.
- W4288772854 hasConcept C22019652 @default.
- W4288772854 hasConcept C2780451532 @default.
- W4288772854 hasConcept C2781002164 @default.
- W4288772854 hasConcept C33923547 @default.
- W4288772854 hasConcept C41008148 @default.
- W4288772854 hasConcept C50644808 @default.
- W4288772854 hasConceptScore W4288772854C108583219 @default.
- W4288772854 hasConceptScore W4288772854C112972136 @default.
- W4288772854 hasConceptScore W4288772854C114466953 @default.
- W4288772854 hasConceptScore W4288772854C119857082 @default.
- W4288772854 hasConceptScore W4288772854C127313418 @default.
- W4288772854 hasConceptScore W4288772854C127413603 @default.
- W4288772854 hasConceptScore W4288772854C134306372 @default.
- W4288772854 hasConceptScore W4288772854C153180895 @default.
- W4288772854 hasConceptScore W4288772854C154945302 @default.
- W4288772854 hasConceptScore W4288772854C165205528 @default.
- W4288772854 hasConceptScore W4288772854C175551986 @default.
- W4288772854 hasConceptScore W4288772854C177148314 @default.
- W4288772854 hasConceptScore W4288772854C199360897 @default.
- W4288772854 hasConceptScore W4288772854C201995342 @default.
- W4288772854 hasConceptScore W4288772854C22019652 @default.
- W4288772854 hasConceptScore W4288772854C2780451532 @default.
- W4288772854 hasConceptScore W4288772854C2781002164 @default.
- W4288772854 hasConceptScore W4288772854C33923547 @default.
- W4288772854 hasConceptScore W4288772854C41008148 @default.
- W4288772854 hasConceptScore W4288772854C50644808 @default.
- W4288772854 hasFunder F4320321001 @default.
- W4288772854 hasIssue "6" @default.
- W4288772854 hasLocation W42887728541 @default.
- W4288772854 hasOpenAccess W4288772854 @default.
- W4288772854 hasPrimaryLocation W42887728541 @default.
- W4288772854 hasRelatedWork W2989932438 @default.
- W4288772854 hasRelatedWork W3045463950 @default.
- W4288772854 hasRelatedWork W3099765033 @default.
- W4288772854 hasRelatedWork W3129456332 @default.
- W4288772854 hasRelatedWork W4223943233 @default.
- W4288772854 hasRelatedWork W4285802257 @default.
- W4288772854 hasRelatedWork W4312200629 @default.
- W4288772854 hasRelatedWork W4360585206 @default.
- W4288772854 hasRelatedWork W4361732492 @default.
- W4288772854 hasRelatedWork W4380075502 @default.
- W4288772854 hasVolume "27" @default.
- W4288772854 isParatext "false" @default.
- W4288772854 isRetracted "false" @default.
- W4288772854 workType "article" @default.