Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288774554> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4288774554 endingPage "191" @default.
- W4288774554 startingPage "179" @default.
- W4288774554 abstract "AbstractHighly imbalanced data typically make accurate predictions difficult. Unfortunately, software defect datasets tend to have fewer defective modules than non-defective modules. Synthetic oversampling approaches, namely SMOTE, address this concern by creating new minority defective modules to balance the class distribution before a model is trained. Despite its success, these approaches come with the following shortcomings such as 1) over-generalization problem and generate near-duplicated data instances (less diverse data) due to oversampling of noisy samples, and 2) increasing the overlaps between different classes around the class boundaries. This paper introduces INF-SMOTE (Informative- Synthetic Minority Oversampling Technique), a novel and efficient synthetic oversampling approach for software defect datasets, simultaneously targeting all the shortcomings. INF-SMOTE identifies the informative minority samples that are appropriate for over-sampling. The process is in two way 1.) it identify and remove the noisy and overlapping samples from borderline minority instances based on the sampling seeds, and 2) synthetic samples are generated from the informative minority samples. Experiments were conducted on 12 releases of SDP (Software Defect Prediction) Datasets from the NASA repository. By comparing with the state-of-the-art techniques, we observe that the INF-SMOTE improves the defect prediction performance. KeywordsClass imbalance problemImbalanced classificationImbalanced datasetsOver-samplingSMOTE" @default.
- W4288774554 created "2022-07-30" @default.
- W4288774554 creator A5008809636 @default.
- W4288774554 creator A5071890338 @default.
- W4288774554 creator A5085164403 @default.
- W4288774554 date "2022-01-01" @default.
- W4288774554 modified "2023-10-18" @default.
- W4288774554 title "Informative Software Defect Data Generation and Prediction: INF-SMOTE" @default.
- W4288774554 cites W2099454382 @default.
- W4288774554 cites W2103715428 @default.
- W4288774554 cites W2120457925 @default.
- W4288774554 cites W2125999269 @default.
- W4288774554 cites W2126626812 @default.
- W4288774554 cites W2132791018 @default.
- W4288774554 cites W2141051748 @default.
- W4288774554 cites W2148143831 @default.
- W4288774554 cites W2151666086 @default.
- W4288774554 cites W2510312579 @default.
- W4288774554 cites W2772832743 @default.
- W4288774554 cites W2775159301 @default.
- W4288774554 cites W2903881165 @default.
- W4288774554 cites W2906683418 @default.
- W4288774554 cites W2955176339 @default.
- W4288774554 cites W3141989311 @default.
- W4288774554 cites W4244895750 @default.
- W4288774554 doi "https://doi.org/10.1007/978-3-031-12638-3_16" @default.
- W4288774554 hasPublicationYear "2022" @default.
- W4288774554 type Work @default.
- W4288774554 citedByCount "0" @default.
- W4288774554 crossrefType "book-chapter" @default.
- W4288774554 hasAuthorship W4288774554A5008809636 @default.
- W4288774554 hasAuthorship W4288774554A5071890338 @default.
- W4288774554 hasAuthorship W4288774554A5085164403 @default.
- W4288774554 hasConcept C106131492 @default.
- W4288774554 hasConcept C111919701 @default.
- W4288774554 hasConcept C119857082 @default.
- W4288774554 hasConcept C124101348 @default.
- W4288774554 hasConcept C134306372 @default.
- W4288774554 hasConcept C140779682 @default.
- W4288774554 hasConcept C153180895 @default.
- W4288774554 hasConcept C154945302 @default.
- W4288774554 hasConcept C160920958 @default.
- W4288774554 hasConcept C177148314 @default.
- W4288774554 hasConcept C197323446 @default.
- W4288774554 hasConcept C2776257435 @default.
- W4288774554 hasConcept C2777212361 @default.
- W4288774554 hasConcept C2777904410 @default.
- W4288774554 hasConcept C31258907 @default.
- W4288774554 hasConcept C31972630 @default.
- W4288774554 hasConcept C33923547 @default.
- W4288774554 hasConcept C41008148 @default.
- W4288774554 hasConcept C98045186 @default.
- W4288774554 hasConceptScore W4288774554C106131492 @default.
- W4288774554 hasConceptScore W4288774554C111919701 @default.
- W4288774554 hasConceptScore W4288774554C119857082 @default.
- W4288774554 hasConceptScore W4288774554C124101348 @default.
- W4288774554 hasConceptScore W4288774554C134306372 @default.
- W4288774554 hasConceptScore W4288774554C140779682 @default.
- W4288774554 hasConceptScore W4288774554C153180895 @default.
- W4288774554 hasConceptScore W4288774554C154945302 @default.
- W4288774554 hasConceptScore W4288774554C160920958 @default.
- W4288774554 hasConceptScore W4288774554C177148314 @default.
- W4288774554 hasConceptScore W4288774554C197323446 @default.
- W4288774554 hasConceptScore W4288774554C2776257435 @default.
- W4288774554 hasConceptScore W4288774554C2777212361 @default.
- W4288774554 hasConceptScore W4288774554C2777904410 @default.
- W4288774554 hasConceptScore W4288774554C31258907 @default.
- W4288774554 hasConceptScore W4288774554C31972630 @default.
- W4288774554 hasConceptScore W4288774554C33923547 @default.
- W4288774554 hasConceptScore W4288774554C41008148 @default.
- W4288774554 hasConceptScore W4288774554C98045186 @default.
- W4288774554 hasLocation W42887745541 @default.
- W4288774554 hasOpenAccess W4288774554 @default.
- W4288774554 hasPrimaryLocation W42887745541 @default.
- W4288774554 hasRelatedWork W10015831 @default.
- W4288774554 hasRelatedWork W10885063 @default.
- W4288774554 hasRelatedWork W10944326 @default.
- W4288774554 hasRelatedWork W12251780 @default.
- W4288774554 hasRelatedWork W12783365 @default.
- W4288774554 hasRelatedWork W14120560 @default.
- W4288774554 hasRelatedWork W1655064 @default.
- W4288774554 hasRelatedWork W2601303 @default.
- W4288774554 hasRelatedWork W7724241 @default.
- W4288774554 hasRelatedWork W8198582 @default.
- W4288774554 isParatext "false" @default.
- W4288774554 isRetracted "false" @default.
- W4288774554 workType "book-chapter" @default.