Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288778896> ?p ?o ?g. }
- W4288778896 endingPage "79889" @default.
- W4288778896 startingPage "79874" @default.
- W4288778896 abstract "Currently, the ability to automatically detect human behavior in image sequences is one of the most important challenges in the area of computer vision. Within this broad field of knowledge, the recognition of activities of people groups in public areas is receiving special attention due to its importance in many aspects including safety and security. This paper proposes a generic computer vision architecture with the ability to learn and recognize different group activities using mainly the local group’s movements. Specifically, a multi-stream deep learning architecture is proposed whose two main streams correspond to a representation based on a descriptor capable of representing the trajectory information of a sequence of images as a collection of local movements that occur in specific regions of the scene. Additional information (e.g. location, time, etc.) to strengthen the classification of activities by including it as additional streams. The proposed architecture is capable of classifying in a robust way different activities of a group as well to deal with the one-class problems. Moreover, the use of a simple descriptor that transforms a sequence of color images into a sequence of two-image streams can reduce the curse of dimensionality using a deep learning approach. The generic deep learning architecture has been evaluated with different datasets outperforming the state-of-the-art approaches providing an efficient architecture for single and multi-class classification problems." @default.
- W4288778896 created "2022-07-30" @default.
- W4288778896 creator A5020817426 @default.
- W4288778896 creator A5044684709 @default.
- W4288778896 creator A5045870755 @default.
- W4288778896 creator A5049623161 @default.
- W4288778896 creator A5080320457 @default.
- W4288778896 date "2022-01-01" @default.
- W4288778896 modified "2023-09-26" @default.
- W4288778896 title "Architecture for Automatic Recognition of Group Activities Using Local Motions and Context" @default.
- W4288778896 cites W1624466393 @default.
- W4288778896 cites W1718812716 @default.
- W4288778896 cites W1755205674 @default.
- W4288778896 cites W1976857135 @default.
- W4288778896 cites W1978723123 @default.
- W4288778896 cites W1998025913 @default.
- W4288778896 cites W2019080172 @default.
- W4288778896 cites W2078999139 @default.
- W4288778896 cites W2122361470 @default.
- W4288778896 cites W2163612318 @default.
- W4288778896 cites W2269938945 @default.
- W4288778896 cites W2540481276 @default.
- W4288778896 cites W2552950674 @default.
- W4288778896 cites W2665124875 @default.
- W4288778896 cites W2733111742 @default.
- W4288778896 cites W2736442062 @default.
- W4288778896 cites W2739846485 @default.
- W4288778896 cites W2748303136 @default.
- W4288778896 cites W2757473709 @default.
- W4288778896 cites W2803974577 @default.
- W4288778896 cites W2890125729 @default.
- W4288778896 cites W2891290365 @default.
- W4288778896 cites W2892624882 @default.
- W4288778896 cites W2896487087 @default.
- W4288778896 cites W2897879219 @default.
- W4288778896 cites W2904013130 @default.
- W4288778896 cites W2913377871 @default.
- W4288778896 cites W2915334726 @default.
- W4288778896 cites W2915683453 @default.
- W4288778896 cites W2924198637 @default.
- W4288778896 cites W2936081713 @default.
- W4288778896 cites W2951093250 @default.
- W4288778896 cites W2954996726 @default.
- W4288778896 cites W2960737790 @default.
- W4288778896 cites W2962791923 @default.
- W4288778896 cites W2963240734 @default.
- W4288778896 cites W2964232409 @default.
- W4288778896 cites W2964331599 @default.
- W4288778896 cites W2970602317 @default.
- W4288778896 cites W2976852454 @default.
- W4288778896 cites W2981650061 @default.
- W4288778896 cites W2981741013 @default.
- W4288778896 cites W2989705574 @default.
- W4288778896 cites W2991194006 @default.
- W4288778896 cites W2991506670 @default.
- W4288778896 cites W3097060387 @default.
- W4288778896 cites W3119771537 @default.
- W4288778896 cites W3130423279 @default.
- W4288778896 cites W3135235283 @default.
- W4288778896 cites W3160655852 @default.
- W4288778896 cites W3173590174 @default.
- W4288778896 cites W3175039885 @default.
- W4288778896 cites W3175508402 @default.
- W4288778896 cites W3177928120 @default.
- W4288778896 cites W3202424564 @default.
- W4288778896 cites W3208954537 @default.
- W4288778896 cites W3213348364 @default.
- W4288778896 doi "https://doi.org/10.1109/access.2022.3195035" @default.
- W4288778896 hasPublicationYear "2022" @default.
- W4288778896 type Work @default.
- W4288778896 citedByCount "1" @default.
- W4288778896 countsByYear W42887788962023 @default.
- W4288778896 crossrefType "journal-article" @default.
- W4288778896 hasAuthorship W4288778896A5020817426 @default.
- W4288778896 hasAuthorship W4288778896A5044684709 @default.
- W4288778896 hasAuthorship W4288778896A5045870755 @default.
- W4288778896 hasAuthorship W4288778896A5049623161 @default.
- W4288778896 hasAuthorship W4288778896A5080320457 @default.
- W4288778896 hasBestOaLocation W42887788961 @default.
- W4288778896 hasConcept C108583219 @default.
- W4288778896 hasConcept C111030470 @default.
- W4288778896 hasConcept C119857082 @default.
- W4288778896 hasConcept C123657996 @default.
- W4288778896 hasConcept C153180895 @default.
- W4288778896 hasConcept C154945302 @default.
- W4288778896 hasConcept C166957645 @default.
- W4288778896 hasConcept C17744445 @default.
- W4288778896 hasConcept C199539241 @default.
- W4288778896 hasConcept C205649164 @default.
- W4288778896 hasConcept C2776359362 @default.
- W4288778896 hasConcept C2777212361 @default.
- W4288778896 hasConcept C2778112365 @default.
- W4288778896 hasConcept C2779343474 @default.
- W4288778896 hasConcept C31972630 @default.
- W4288778896 hasConcept C41008148 @default.
- W4288778896 hasConcept C54355233 @default.
- W4288778896 hasConcept C86803240 @default.
- W4288778896 hasConcept C94625758 @default.