Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288803957> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4288803957 abstract "Internet of Underwater Things (IoUT) have gained rapid momentum over the past decade with applications spanning from environmental monitoring and exploration, defence applications, etc. The traditional IoUT systems use machine learning (ML) approaches which cater the needs of reliability, efficiency and timeliness. However, an extensive review of the various studies conducted highlight the significance of data privacy and security in IoUT frameworks as a predominant factor in achieving desired outcomes in mission critical applications. Federated learning (FL) is a secured, decentralized framework which is a recent development in machine learning, that will help in fulfilling the challenges faced by conventional ML approaches in IoUT. This paper presents an overview of the various applications of FL in IoUT, its challenges, open issues and indicates direction of future research prospects." @default.
- W4288803957 created "2022-07-30" @default.
- W4288803957 creator A5013054905 @default.
- W4288803957 creator A5018409592 @default.
- W4288803957 creator A5030455631 @default.
- W4288803957 creator A5052938061 @default.
- W4288803957 creator A5054704457 @default.
- W4288803957 creator A5064982530 @default.
- W4288803957 creator A5076805539 @default.
- W4288803957 creator A5089469340 @default.
- W4288803957 date "2022-07-28" @default.
- W4288803957 modified "2023-09-26" @default.
- W4288803957 title "Federated Learning for IoUT: Concepts, Applications, Challenges and Opportunities" @default.
- W4288803957 doi "https://doi.org/10.48550/arxiv.2207.13976" @default.
- W4288803957 hasPublicationYear "2022" @default.
- W4288803957 type Work @default.
- W4288803957 citedByCount "1" @default.
- W4288803957 countsByYear W42888039572022 @default.
- W4288803957 crossrefType "posted-content" @default.
- W4288803957 hasAuthorship W4288803957A5013054905 @default.
- W4288803957 hasAuthorship W4288803957A5018409592 @default.
- W4288803957 hasAuthorship W4288803957A5030455631 @default.
- W4288803957 hasAuthorship W4288803957A5052938061 @default.
- W4288803957 hasAuthorship W4288803957A5054704457 @default.
- W4288803957 hasAuthorship W4288803957A5064982530 @default.
- W4288803957 hasAuthorship W4288803957A5076805539 @default.
- W4288803957 hasAuthorship W4288803957A5089469340 @default.
- W4288803957 hasBestOaLocation W42888039571 @default.
- W4288803957 hasConcept C110875604 @default.
- W4288803957 hasConcept C121332964 @default.
- W4288803957 hasConcept C136764020 @default.
- W4288803957 hasConcept C163258240 @default.
- W4288803957 hasConcept C41008148 @default.
- W4288803957 hasConcept C43214815 @default.
- W4288803957 hasConcept C62520636 @default.
- W4288803957 hasConceptScore W4288803957C110875604 @default.
- W4288803957 hasConceptScore W4288803957C121332964 @default.
- W4288803957 hasConceptScore W4288803957C136764020 @default.
- W4288803957 hasConceptScore W4288803957C163258240 @default.
- W4288803957 hasConceptScore W4288803957C41008148 @default.
- W4288803957 hasConceptScore W4288803957C43214815 @default.
- W4288803957 hasConceptScore W4288803957C62520636 @default.
- W4288803957 hasLocation W42888039571 @default.
- W4288803957 hasOpenAccess W4288803957 @default.
- W4288803957 hasPrimaryLocation W42888039571 @default.
- W4288803957 hasRelatedWork W12072927 @default.
- W4288803957 hasRelatedWork W13027394 @default.
- W4288803957 hasRelatedWork W140747 @default.
- W4288803957 hasRelatedWork W1557031 @default.
- W4288803957 hasRelatedWork W1677861 @default.
- W4288803957 hasRelatedWork W3446758 @default.
- W4288803957 hasRelatedWork W7567679 @default.
- W4288803957 hasRelatedWork W7876452 @default.
- W4288803957 hasRelatedWork W7900200 @default.
- W4288803957 hasRelatedWork W9261052 @default.
- W4288803957 isParatext "false" @default.
- W4288803957 isRetracted "false" @default.
- W4288803957 workType "article" @default.