Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288804591> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4288804591 abstract "FIB/SEM tomography represents an indispensable tool for the characterization of three-dimensional nanostructures in battery research and many other fields. However, contrast and 3D classification/reconstruction problems occur in many cases, which strongly limits the applicability of the technique especially on porous materials, like those used for electrode materials in batteries or fuel cells. Distinguishing the different components like active Li storage particles and carbon/binder materials is difficult and often prevents a reliable quantitative analysis of image data, or may even lead to wrong conclusions about structure-property relationships. In this contribution, we present a novel approach for data classification in three-dimensional image data obtained by FIB/SEM tomography and its applications to NMC battery electrode materials. We use two different image signals, namely the signal of the angled SE2 chamber detector and the Inlens detector signal, combine both signals and train a random forest, i.e. a particular machine learning algorithm. We demonstrate that this approach can overcome current limitations of existing techniques suitable for multi-phase measurements and that it allows for quantitative data reconstruction even where current state-of the art techniques fail, or demand for large training sets. This approach may yield as guideline for future research using FIB/SEM tomography." @default.
- W4288804591 created "2022-07-30" @default.
- W4288804591 creator A5003795747 @default.
- W4288804591 creator A5008049634 @default.
- W4288804591 creator A5008350688 @default.
- W4288804591 creator A5012869675 @default.
- W4288804591 creator A5019577850 @default.
- W4288804591 creator A5026174054 @default.
- W4288804591 creator A5042036645 @default.
- W4288804591 creator A5051345018 @default.
- W4288804591 creator A5077676907 @default.
- W4288804591 date "2022-07-28" @default.
- W4288804591 modified "2023-09-29" @default.
- W4288804591 title "Classification of FIB/SEM-tomography images for highly porous multiphase materials using random forest classifiers" @default.
- W4288804591 doi "https://doi.org/10.48550/arxiv.2207.14114" @default.
- W4288804591 hasPublicationYear "2022" @default.
- W4288804591 type Work @default.
- W4288804591 citedByCount "0" @default.
- W4288804591 crossrefType "posted-content" @default.
- W4288804591 hasAuthorship W4288804591A5003795747 @default.
- W4288804591 hasAuthorship W4288804591A5008049634 @default.
- W4288804591 hasAuthorship W4288804591A5008350688 @default.
- W4288804591 hasAuthorship W4288804591A5012869675 @default.
- W4288804591 hasAuthorship W4288804591A5019577850 @default.
- W4288804591 hasAuthorship W4288804591A5026174054 @default.
- W4288804591 hasAuthorship W4288804591A5042036645 @default.
- W4288804591 hasAuthorship W4288804591A5051345018 @default.
- W4288804591 hasAuthorship W4288804591A5077676907 @default.
- W4288804591 hasBestOaLocation W42888045911 @default.
- W4288804591 hasConcept C120665830 @default.
- W4288804591 hasConcept C121332964 @default.
- W4288804591 hasConcept C154945302 @default.
- W4288804591 hasConcept C159985019 @default.
- W4288804591 hasConcept C163258240 @default.
- W4288804591 hasConcept C163716698 @default.
- W4288804591 hasConcept C169258074 @default.
- W4288804591 hasConcept C171250308 @default.
- W4288804591 hasConcept C192562407 @default.
- W4288804591 hasConcept C199360897 @default.
- W4288804591 hasConcept C2779843651 @default.
- W4288804591 hasConcept C2780841128 @default.
- W4288804591 hasConcept C41008148 @default.
- W4288804591 hasConcept C555008776 @default.
- W4288804591 hasConcept C62520636 @default.
- W4288804591 hasConcept C6648577 @default.
- W4288804591 hasConcept C76155785 @default.
- W4288804591 hasConcept C94915269 @default.
- W4288804591 hasConceptScore W4288804591C120665830 @default.
- W4288804591 hasConceptScore W4288804591C121332964 @default.
- W4288804591 hasConceptScore W4288804591C154945302 @default.
- W4288804591 hasConceptScore W4288804591C159985019 @default.
- W4288804591 hasConceptScore W4288804591C163258240 @default.
- W4288804591 hasConceptScore W4288804591C163716698 @default.
- W4288804591 hasConceptScore W4288804591C169258074 @default.
- W4288804591 hasConceptScore W4288804591C171250308 @default.
- W4288804591 hasConceptScore W4288804591C192562407 @default.
- W4288804591 hasConceptScore W4288804591C199360897 @default.
- W4288804591 hasConceptScore W4288804591C2779843651 @default.
- W4288804591 hasConceptScore W4288804591C2780841128 @default.
- W4288804591 hasConceptScore W4288804591C41008148 @default.
- W4288804591 hasConceptScore W4288804591C555008776 @default.
- W4288804591 hasConceptScore W4288804591C62520636 @default.
- W4288804591 hasConceptScore W4288804591C6648577 @default.
- W4288804591 hasConceptScore W4288804591C76155785 @default.
- W4288804591 hasConceptScore W4288804591C94915269 @default.
- W4288804591 hasLocation W42888045911 @default.
- W4288804591 hasOpenAccess W4288804591 @default.
- W4288804591 hasPrimaryLocation W42888045911 @default.
- W4288804591 hasRelatedWork W10178711 @default.
- W4288804591 hasRelatedWork W10875321 @default.
- W4288804591 hasRelatedWork W32052 @default.
- W4288804591 hasRelatedWork W3624746 @default.
- W4288804591 hasRelatedWork W4281120 @default.
- W4288804591 hasRelatedWork W6336564 @default.
- W4288804591 hasRelatedWork W8790197 @default.
- W4288804591 hasRelatedWork W9201644 @default.
- W4288804591 hasRelatedWork W9400695 @default.
- W4288804591 hasRelatedWork W9284726 @default.
- W4288804591 isParatext "false" @default.
- W4288804591 isRetracted "false" @default.
- W4288804591 workType "article" @default.