Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288804744> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4288804744 abstract "There has been a plethora of work towards improving robot perception and navigation, yet their application in hazardous environments, like during a fire or an earthquake, is still at a nascent stage. We hypothesize two key challenges here: first, it is difficult to replicate such scenarios in the real world, which is necessary for training and testing purposes. Second, current systems are not fully able to take advantage of the rich multi-modal data available in such hazardous environments. To address the first challenge, we propose to harness the enormous amount of visual content available in the form of movies and TV shows, and develop a dataset that can represent hazardous environments encountered in the real world. The data is annotated with high-level danger ratings for realistic disaster images, and corresponding keywords are provided that summarize the content of the scene. In response to the second challenge, we propose a multi-modal danger estimation pipeline for collaborative human-robot escape scenarios. Our Bayesian framework improves danger estimation by fusing information from robot's camera sensor and language inputs from the human. Furthermore, we augment the estimation module with a risk-aware planner that helps in identifying safer paths out of the dangerous environment. Through extensive simulations, we exhibit the advantages of our multi-modal perception framework that gets translated into tangible benefits such as higher success rate in a collaborative human-robot mission." @default.
- W4288804744 created "2022-07-30" @default.
- W4288804744 creator A5008552962 @default.
- W4288804744 creator A5022285736 @default.
- W4288804744 creator A5026001109 @default.
- W4288804744 creator A5087789612 @default.
- W4288804744 creator A5088662298 @default.
- W4288804744 date "2022-07-27" @default.
- W4288804744 modified "2023-09-26" @default.
- W4288804744 title "Learning to Assess Danger from Movies for Cooperative Escape Planning in Hazardous Environments" @default.
- W4288804744 doi "https://doi.org/10.48550/arxiv.2207.13791" @default.
- W4288804744 hasPublicationYear "2022" @default.
- W4288804744 type Work @default.
- W4288804744 citedByCount "0" @default.
- W4288804744 crossrefType "posted-content" @default.
- W4288804744 hasAuthorship W4288804744A5008552962 @default.
- W4288804744 hasAuthorship W4288804744A5022285736 @default.
- W4288804744 hasAuthorship W4288804744A5026001109 @default.
- W4288804744 hasAuthorship W4288804744A5087789612 @default.
- W4288804744 hasAuthorship W4288804744A5088662298 @default.
- W4288804744 hasBestOaLocation W42888047441 @default.
- W4288804744 hasConcept C105795698 @default.
- W4288804744 hasConcept C107457646 @default.
- W4288804744 hasConcept C127413603 @default.
- W4288804744 hasConcept C154945302 @default.
- W4288804744 hasConcept C169760540 @default.
- W4288804744 hasConcept C185592680 @default.
- W4288804744 hasConcept C188027245 @default.
- W4288804744 hasConcept C199360897 @default.
- W4288804744 hasConcept C22507642 @default.
- W4288804744 hasConcept C26760741 @default.
- W4288804744 hasConcept C2776654903 @default.
- W4288804744 hasConcept C2776999362 @default.
- W4288804744 hasConcept C2781162219 @default.
- W4288804744 hasConcept C33923547 @default.
- W4288804744 hasConcept C38652104 @default.
- W4288804744 hasConcept C41008148 @default.
- W4288804744 hasConcept C43521106 @default.
- W4288804744 hasConcept C548081761 @default.
- W4288804744 hasConcept C71139939 @default.
- W4288804744 hasConcept C86803240 @default.
- W4288804744 hasConcept C90509273 @default.
- W4288804744 hasConceptScore W4288804744C105795698 @default.
- W4288804744 hasConceptScore W4288804744C107457646 @default.
- W4288804744 hasConceptScore W4288804744C127413603 @default.
- W4288804744 hasConceptScore W4288804744C154945302 @default.
- W4288804744 hasConceptScore W4288804744C169760540 @default.
- W4288804744 hasConceptScore W4288804744C185592680 @default.
- W4288804744 hasConceptScore W4288804744C188027245 @default.
- W4288804744 hasConceptScore W4288804744C199360897 @default.
- W4288804744 hasConceptScore W4288804744C22507642 @default.
- W4288804744 hasConceptScore W4288804744C26760741 @default.
- W4288804744 hasConceptScore W4288804744C2776654903 @default.
- W4288804744 hasConceptScore W4288804744C2776999362 @default.
- W4288804744 hasConceptScore W4288804744C2781162219 @default.
- W4288804744 hasConceptScore W4288804744C33923547 @default.
- W4288804744 hasConceptScore W4288804744C38652104 @default.
- W4288804744 hasConceptScore W4288804744C41008148 @default.
- W4288804744 hasConceptScore W4288804744C43521106 @default.
- W4288804744 hasConceptScore W4288804744C548081761 @default.
- W4288804744 hasConceptScore W4288804744C71139939 @default.
- W4288804744 hasConceptScore W4288804744C86803240 @default.
- W4288804744 hasConceptScore W4288804744C90509273 @default.
- W4288804744 hasLocation W42888047441 @default.
- W4288804744 hasOpenAccess W4288804744 @default.
- W4288804744 hasPrimaryLocation W42888047441 @default.
- W4288804744 hasRelatedWork W11186050 @default.
- W4288804744 hasRelatedWork W12016916 @default.
- W4288804744 hasRelatedWork W13843332 @default.
- W4288804744 hasRelatedWork W14163598 @default.
- W4288804744 hasRelatedWork W633195 @default.
- W4288804744 hasRelatedWork W6354367 @default.
- W4288804744 hasRelatedWork W6596632 @default.
- W4288804744 hasRelatedWork W8924183 @default.
- W4288804744 hasRelatedWork W9238777 @default.
- W4288804744 hasRelatedWork W9728998 @default.
- W4288804744 isParatext "false" @default.
- W4288804744 isRetracted "false" @default.
- W4288804744 workType "article" @default.