Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288817218> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4288817218 abstract "We develop a Poisson geometric framework for studying the representation theory of all contragredient quantum super groups at roots of unity. This is done in a uniform fashion by treating the larger class of quantum doubles of bozonizations of all distinguished pre-Nichols algebras arXiv:1405.6681 belonging to a one-parameter family; we call these algebras emph{large} quantum groups. We prove that each of these quantum algebras has a central Hopf subalgebra giving rise to a Poisson order in the sense of arXiv:math/0201042.. We describe explicitly the underlying Poisson algebraic groups and Poisson homogeneous spaces in terms of Borel subgroups of complex semisimple algebraic groups of adjoint type. The geometry of the Poisson algebraic groups and Poisson homogeneous spaces that are involved and its applications to the irreducible representations of the algebras $U_{mathfrak{q}} supset U_{mathfrak{q}}^{geqslant} supset U_{mathfrak{q}}^+$ are also described. Besides all (multiparameter) big quantum groups of De Concini--Kac--Procesi and big quantum super groups at roots of unity, our framework also contains the quantizations in characteristic 0 of the 34-dimensional Kac-Weisfeler Lie algebras in characteristic 2 and the 10-dimensional Brown Lie algebras in characteristic 3. The previous approaches to the above problems relied on reductions to rank two cases and direct calculations of Poisson brackets, which is not possible in the super case since there are 13 kinds of additional Serre relations on up to 4 generators. We use a new approach that relies on perfect pairings between restricted and non-restricted integral forms." @default.
- W4288817218 created "2022-07-30" @default.
- W4288817218 creator A5010285994 @default.
- W4288817218 creator A5058160381 @default.
- W4288817218 creator A5088262067 @default.
- W4288817218 date "2020-08-25" @default.
- W4288817218 modified "2023-10-01" @default.
- W4288817218 title "Poisson orders on large quantum groups" @default.
- W4288817218 doi "https://doi.org/10.48550/arxiv.2008.11025" @default.
- W4288817218 hasPublicationYear "2020" @default.
- W4288817218 type Work @default.
- W4288817218 citedByCount "0" @default.
- W4288817218 crossrefType "posted-content" @default.
- W4288817218 hasAuthorship W4288817218A5010285994 @default.
- W4288817218 hasAuthorship W4288817218A5058160381 @default.
- W4288817218 hasAuthorship W4288817218A5088262067 @default.
- W4288817218 hasBestOaLocation W42888172181 @default.
- W4288817218 hasConcept C100906024 @default.
- W4288817218 hasConcept C10138342 @default.
- W4288817218 hasConcept C105795698 @default.
- W4288817218 hasConcept C114614502 @default.
- W4288817218 hasConcept C121332964 @default.
- W4288817218 hasConcept C134306372 @default.
- W4288817218 hasConcept C136119220 @default.
- W4288817218 hasConcept C148647251 @default.
- W4288817218 hasConcept C162324750 @default.
- W4288817218 hasConcept C164226766 @default.
- W4288817218 hasConcept C182306322 @default.
- W4288817218 hasConcept C187173678 @default.
- W4288817218 hasConcept C187915474 @default.
- W4288817218 hasConcept C197273675 @default.
- W4288817218 hasConcept C202444582 @default.
- W4288817218 hasConcept C206343339 @default.
- W4288817218 hasConcept C2781311116 @default.
- W4288817218 hasConcept C33923547 @default.
- W4288817218 hasConcept C51568863 @default.
- W4288817218 hasConcept C62520636 @default.
- W4288817218 hasConcept C67996461 @default.
- W4288817218 hasConcept C84114770 @default.
- W4288817218 hasConcept C9376300 @default.
- W4288817218 hasConceptScore W4288817218C100906024 @default.
- W4288817218 hasConceptScore W4288817218C10138342 @default.
- W4288817218 hasConceptScore W4288817218C105795698 @default.
- W4288817218 hasConceptScore W4288817218C114614502 @default.
- W4288817218 hasConceptScore W4288817218C121332964 @default.
- W4288817218 hasConceptScore W4288817218C134306372 @default.
- W4288817218 hasConceptScore W4288817218C136119220 @default.
- W4288817218 hasConceptScore W4288817218C148647251 @default.
- W4288817218 hasConceptScore W4288817218C162324750 @default.
- W4288817218 hasConceptScore W4288817218C164226766 @default.
- W4288817218 hasConceptScore W4288817218C182306322 @default.
- W4288817218 hasConceptScore W4288817218C187173678 @default.
- W4288817218 hasConceptScore W4288817218C187915474 @default.
- W4288817218 hasConceptScore W4288817218C197273675 @default.
- W4288817218 hasConceptScore W4288817218C202444582 @default.
- W4288817218 hasConceptScore W4288817218C206343339 @default.
- W4288817218 hasConceptScore W4288817218C2781311116 @default.
- W4288817218 hasConceptScore W4288817218C33923547 @default.
- W4288817218 hasConceptScore W4288817218C51568863 @default.
- W4288817218 hasConceptScore W4288817218C62520636 @default.
- W4288817218 hasConceptScore W4288817218C67996461 @default.
- W4288817218 hasConceptScore W4288817218C84114770 @default.
- W4288817218 hasConceptScore W4288817218C9376300 @default.
- W4288817218 hasLocation W42888172181 @default.
- W4288817218 hasOpenAccess W4288817218 @default.
- W4288817218 hasPrimaryLocation W42888172181 @default.
- W4288817218 hasRelatedWork W1972329950 @default.
- W4288817218 hasRelatedWork W1995548053 @default.
- W4288817218 hasRelatedWork W2053573934 @default.
- W4288817218 hasRelatedWork W2095518244 @default.
- W4288817218 hasRelatedWork W2146764372 @default.
- W4288817218 hasRelatedWork W2158799569 @default.
- W4288817218 hasRelatedWork W3135225146 @default.
- W4288817218 hasRelatedWork W4207054827 @default.
- W4288817218 hasRelatedWork W4288817218 @default.
- W4288817218 hasRelatedWork W4300694874 @default.
- W4288817218 isParatext "false" @default.
- W4288817218 isRetracted "false" @default.
- W4288817218 workType "article" @default.