Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288871920> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4288871920 endingPage "9" @default.
- W4288871920 startingPage "1" @default.
- W4288871920 abstract "In the advancement of communication technologies and electronic commerce, the industrial economy consumer finance serves as the source of financial stability and improves the economic and social status of the household; thus, there is a need to significantly prevent default in consumer finance. The prediction of individual default and prevent default in consumer finance has become a significant factor promoting the growth of the industrial economy in the financial sector. Thus, there is a need for an effective and efficient approach for promoting the industrial economy. This study aims to improve the prediction accuracy of individual default and prevent default in consumer finance using an optimized light gradient boosting machine (LightGBM) algorithm. The principles of LightGBM are explored, and the key factors affecting the performance of LightGBM are analyzed. The prediction performance of LightGBM is improved by balancing the training dataset. The performance of LightGBM is compared with several machine learning algorithms using Alibaba Cloud Tianchi big datasets. The experimental results show that the LightGBM prediction model achieved the highest performance with an accuracy of 81%, precision 88%, recall 72%, the area under the curve (AUC) with 0.76, and the F1 score (F1) with 0.79. The optimization of LightGBM can greatly enhance the prediction of personal default, which is helpful to the effective analysis of consumer finance complexity, reducing the investment risk of the financial industry and promoting the development of the industrial economy in the financial sector." @default.
- W4288871920 created "2022-07-31" @default.
- W4288871920 creator A5043208486 @default.
- W4288871920 creator A5075141755 @default.
- W4288871920 date "2022-07-30" @default.
- W4288871920 modified "2023-10-11" @default.
- W4288871920 title "Complexity Analysis of Consumer Finance following Computer LightGBM Algorithm under Industrial Economy" @default.
- W4288871920 cites W1660289459 @default.
- W4288871920 cites W2625392185 @default.
- W4288871920 cites W2736832651 @default.
- W4288871920 cites W2737889100 @default.
- W4288871920 cites W2751596245 @default.
- W4288871920 cites W2752283728 @default.
- W4288871920 cites W2752628211 @default.
- W4288871920 cites W2758059956 @default.
- W4288871920 cites W2768937240 @default.
- W4288871920 cites W2777877153 @default.
- W4288871920 cites W2785697454 @default.
- W4288871920 cites W2789510652 @default.
- W4288871920 cites W2792606671 @default.
- W4288871920 cites W2795064858 @default.
- W4288871920 cites W2806900750 @default.
- W4288871920 cites W2809684781 @default.
- W4288871920 cites W2810423422 @default.
- W4288871920 cites W2811352070 @default.
- W4288871920 cites W2859511454 @default.
- W4288871920 cites W2886330306 @default.
- W4288871920 cites W2900853407 @default.
- W4288871920 cites W2912002915 @default.
- W4288871920 cites W2918821272 @default.
- W4288871920 cites W2922241215 @default.
- W4288871920 cites W2981686111 @default.
- W4288871920 cites W2991061473 @default.
- W4288871920 cites W2996182431 @default.
- W4288871920 cites W3005048680 @default.
- W4288871920 cites W3088346701 @default.
- W4288871920 cites W3107151763 @default.
- W4288871920 doi "https://doi.org/10.1155/2022/2865959" @default.
- W4288871920 hasPublicationYear "2022" @default.
- W4288871920 type Work @default.
- W4288871920 citedByCount "2" @default.
- W4288871920 countsByYear W42888719202023 @default.
- W4288871920 crossrefType "journal-article" @default.
- W4288871920 hasAuthorship W4288871920A5043208486 @default.
- W4288871920 hasAuthorship W4288871920A5075141755 @default.
- W4288871920 hasBestOaLocation W42888719201 @default.
- W4288871920 hasConcept C10138342 @default.
- W4288871920 hasConcept C11413529 @default.
- W4288871920 hasConcept C119857082 @default.
- W4288871920 hasConcept C154945302 @default.
- W4288871920 hasConcept C162324750 @default.
- W4288871920 hasConcept C169258074 @default.
- W4288871920 hasConcept C41008148 @default.
- W4288871920 hasConcept C46686674 @default.
- W4288871920 hasConcept C70153297 @default.
- W4288871920 hasConceptScore W4288871920C10138342 @default.
- W4288871920 hasConceptScore W4288871920C11413529 @default.
- W4288871920 hasConceptScore W4288871920C119857082 @default.
- W4288871920 hasConceptScore W4288871920C154945302 @default.
- W4288871920 hasConceptScore W4288871920C162324750 @default.
- W4288871920 hasConceptScore W4288871920C169258074 @default.
- W4288871920 hasConceptScore W4288871920C41008148 @default.
- W4288871920 hasConceptScore W4288871920C46686674 @default.
- W4288871920 hasConceptScore W4288871920C70153297 @default.
- W4288871920 hasFunder F4320329331 @default.
- W4288871920 hasLocation W42888719201 @default.
- W4288871920 hasOpenAccess W4288871920 @default.
- W4288871920 hasPrimaryLocation W42888719201 @default.
- W4288871920 hasRelatedWork W1968832299 @default.
- W4288871920 hasRelatedWork W1979006554 @default.
- W4288871920 hasRelatedWork W2766514146 @default.
- W4288871920 hasRelatedWork W4225307033 @default.
- W4288871920 hasRelatedWork W4296079469 @default.
- W4288871920 hasRelatedWork W4312821854 @default.
- W4288871920 hasRelatedWork W4313488044 @default.
- W4288871920 hasRelatedWork W4376274634 @default.
- W4288871920 hasRelatedWork W4379536929 @default.
- W4288871920 hasRelatedWork W4385447970 @default.
- W4288871920 hasVolume "2022" @default.
- W4288871920 isParatext "false" @default.
- W4288871920 isRetracted "false" @default.
- W4288871920 workType "article" @default.