Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288902406> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4288902406 endingPage "12" @default.
- W4288902406 startingPage "1" @default.
- W4288902406 abstract "The health status of elite tennis players and the results of tennis matches are positively proportional under normal circumstances. The physical and psychological functions of tennis players directly affect the athletic ability of tennis players. With the improvement of people’s living standards, people’s attention to tennis has also increased. Tennis has received increasing attention in China, and the training of tennis players has become increasingly necessary. However, China is still using the traditional means of obtaining athletes’ health information to evaluate athletes’ health information. This has led to imperfect research into tennis players’ health information and professional input systems. This makes the understanding of the health information of athletes incomplete and profound, and it affects the athletic ability of athletes. In this paper, deep learning and a two-factor model are added to tennis players’ health information and professional input, and the feasibility of a deep learning system to comprehensively improve health information input is explored. The experimental results show that the application of the convolutional neural network method in the system improves the response speed to the physical fitness state of tennis players by 5%. This adds technical support for timely understanding of tennis players’ physical health information and prevents players from making mistakes on the court due to physical reasons." @default.
- W4288902406 created "2022-07-31" @default.
- W4288902406 creator A5009106582 @default.
- W4288902406 date "2022-07-30" @default.
- W4288902406 modified "2023-10-14" @default.
- W4288902406 title "A Continuous Deep Learning System Study of Tennis Player Health Information and Professional Input" @default.
- W4288902406 cites W2029316659 @default.
- W4288902406 cites W2345276999 @default.
- W4288902406 cites W2581330921 @default.
- W4288902406 cites W2582187633 @default.
- W4288902406 cites W2587240636 @default.
- W4288902406 cites W2599743206 @default.
- W4288902406 cites W2609375464 @default.
- W4288902406 cites W2617669016 @default.
- W4288902406 cites W2619373668 @default.
- W4288902406 cites W2621048556 @default.
- W4288902406 cites W2735006420 @default.
- W4288902406 cites W2796802878 @default.
- W4288902406 cites W2940624697 @default.
- W4288902406 cites W2945145212 @default.
- W4288902406 cites W2981432764 @default.
- W4288902406 cites W3003775776 @default.
- W4288902406 cites W3022972893 @default.
- W4288902406 cites W3033968471 @default.
- W4288902406 cites W3150070881 @default.
- W4288902406 cites W3174909138 @default.
- W4288902406 cites W3188191200 @default.
- W4288902406 cites W3210845810 @default.
- W4288902406 cites W4206446958 @default.
- W4288902406 cites W4234243207 @default.
- W4288902406 doi "https://doi.org/10.1155/2022/8599894" @default.
- W4288902406 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35942453" @default.
- W4288902406 hasPublicationYear "2022" @default.
- W4288902406 type Work @default.
- W4288902406 citedByCount "2" @default.
- W4288902406 countsByYear W42889024062023 @default.
- W4288902406 crossrefType "journal-article" @default.
- W4288902406 hasAuthorship W4288902406A5009106582 @default.
- W4288902406 hasBestOaLocation W42889024061 @default.
- W4288902406 hasConcept C123676819 @default.
- W4288902406 hasConcept C144237770 @default.
- W4288902406 hasConcept C15744967 @default.
- W4288902406 hasConcept C1862650 @default.
- W4288902406 hasConcept C2781054738 @default.
- W4288902406 hasConcept C33923547 @default.
- W4288902406 hasConcept C41008148 @default.
- W4288902406 hasConcept C49774154 @default.
- W4288902406 hasConcept C71924100 @default.
- W4288902406 hasConcept C75630572 @default.
- W4288902406 hasConceptScore W4288902406C123676819 @default.
- W4288902406 hasConceptScore W4288902406C144237770 @default.
- W4288902406 hasConceptScore W4288902406C15744967 @default.
- W4288902406 hasConceptScore W4288902406C1862650 @default.
- W4288902406 hasConceptScore W4288902406C2781054738 @default.
- W4288902406 hasConceptScore W4288902406C33923547 @default.
- W4288902406 hasConceptScore W4288902406C41008148 @default.
- W4288902406 hasConceptScore W4288902406C49774154 @default.
- W4288902406 hasConceptScore W4288902406C71924100 @default.
- W4288902406 hasConceptScore W4288902406C75630572 @default.
- W4288902406 hasLocation W42889024061 @default.
- W4288902406 hasLocation W42889024062 @default.
- W4288902406 hasLocation W42889024063 @default.
- W4288902406 hasOpenAccess W4288902406 @default.
- W4288902406 hasPrimaryLocation W42889024061 @default.
- W4288902406 hasRelatedWork W201407858 @default.
- W4288902406 hasRelatedWork W2366356402 @default.
- W4288902406 hasRelatedWork W2373213442 @default.
- W4288902406 hasRelatedWork W2373868493 @default.
- W4288902406 hasRelatedWork W2748952813 @default.
- W4288902406 hasRelatedWork W2803691927 @default.
- W4288902406 hasRelatedWork W2891153828 @default.
- W4288902406 hasRelatedWork W2892592112 @default.
- W4288902406 hasRelatedWork W2899084033 @default.
- W4288902406 hasRelatedWork W4361864738 @default.
- W4288902406 hasVolume "2022" @default.
- W4288902406 isParatext "false" @default.
- W4288902406 isRetracted "false" @default.
- W4288902406 workType "article" @default.