Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289012951> ?p ?o ?g. }
- W4289012951 abstract "Abstract Artificial Intelligence (AI) has a multitude of applications in cancer research and oncology. However, the training of AI systems is impeded by the limited availability of large datasets due to data protection requirements and other regulatory obstacles. Federated and swarm learning represent possible solutions to this problem by collaboratively training AI models while avoiding data transfer. However, in these decentralized methods, weight updates are still transferred to the aggregation server for merging the models. This leaves the possibility for a breach of data privacy, for example by model inversion or membership inference attacks by untrusted servers. Homomorphically encrypted federated learning (HEFL) is a solution to this problem because only encrypted weights are transferred, and model updates are performed in the encrypted space. Here, we demonstrate the first successful implementation of HEFL in a range of clinically relevant tasks in cancer image analysis on multicentric datasets in radiology and histopathology. We show that HEFL enables the training of AI models which outperform locally trained models and perform on par with models which are centrally trained. In the future, HEFL can enable multiple institutions to co-train AI models without forsaking data governance and without ever transmitting any decryptable data to untrusted servers. One Sentence Summary Federated learning with homomorphic encryption enables multiple parties to securely co-train artificial intelligence models in pathology and radiology, reaching state-of-the-art performance with privacy guarantees." @default.
- W4289012951 created "2022-07-31" @default.
- W4289012951 creator A5000554104 @default.
- W4289012951 creator A5010589327 @default.
- W4289012951 creator A5016512818 @default.
- W4289012951 creator A5018843444 @default.
- W4289012951 creator A5020686054 @default.
- W4289012951 creator A5022783154 @default.
- W4289012951 creator A5025409813 @default.
- W4289012951 creator A5035448242 @default.
- W4289012951 creator A5036777611 @default.
- W4289012951 creator A5041644263 @default.
- W4289012951 creator A5048906700 @default.
- W4289012951 creator A5053258271 @default.
- W4289012951 creator A5053522042 @default.
- W4289012951 creator A5054579793 @default.
- W4289012951 creator A5056553215 @default.
- W4289012951 creator A5060947645 @default.
- W4289012951 creator A5070895143 @default.
- W4289012951 creator A5072331224 @default.
- W4289012951 creator A5072853954 @default.
- W4289012951 creator A5073167797 @default.
- W4289012951 creator A5073483894 @default.
- W4289012951 creator A5074827533 @default.
- W4289012951 creator A5076251937 @default.
- W4289012951 creator A5076609492 @default.
- W4289012951 creator A5080978624 @default.
- W4289012951 creator A5083832117 @default.
- W4289012951 creator A5091689170 @default.
- W4289012951 date "2022-07-31" @default.
- W4289012951 modified "2023-10-17" @default.
- W4289012951 title "Encrypted federated learning for secure decentralized collaboration in cancer image analysis" @default.
- W4289012951 cites W1641498739 @default.
- W4289012951 cites W1677182931 @default.
- W4289012951 cites W1901129140 @default.
- W4289012951 cites W2109740395 @default.
- W4289012951 cites W2132162500 @default.
- W4289012951 cites W2156620229 @default.
- W4289012951 cites W2171235660 @default.
- W4289012951 cites W2464708700 @default.
- W4289012951 cites W2751069891 @default.
- W4289012951 cites W2760946358 @default.
- W4289012951 cites W2794685135 @default.
- W4289012951 cites W2890016426 @default.
- W4289012951 cites W2948930564 @default.
- W4289012951 cites W2964162474 @default.
- W4289012951 cites W2988666823 @default.
- W4289012951 cites W2990874078 @default.
- W4289012951 cites W2998175747 @default.
- W4289012951 cites W3002683979 @default.
- W4289012951 cites W3007935259 @default.
- W4289012951 cites W3012243582 @default.
- W4289012951 cites W3033511014 @default.
- W4289012951 cites W3039674406 @default.
- W4289012951 cites W3043835773 @default.
- W4289012951 cites W3044996171 @default.
- W4289012951 cites W3048990316 @default.
- W4289012951 cites W3104135675 @default.
- W4289012951 cites W3118741877 @default.
- W4289012951 cites W3121997355 @default.
- W4289012951 cites W3135345798 @default.
- W4289012951 cites W3146345129 @default.
- W4289012951 cites W3151682712 @default.
- W4289012951 cites W3158883948 @default.
- W4289012951 cites W3159302505 @default.
- W4289012951 cites W3165750456 @default.
- W4289012951 cites W3190686857 @default.
- W4289012951 cites W3191782051 @default.
- W4289012951 cites W3195064215 @default.
- W4289012951 cites W3200445016 @default.
- W4289012951 cites W3200636593 @default.
- W4289012951 cites W3200840849 @default.
- W4289012951 cites W3205594709 @default.
- W4289012951 cites W3215409948 @default.
- W4289012951 cites W3217644914 @default.
- W4289012951 cites W4205228770 @default.
- W4289012951 cites W4221014585 @default.
- W4289012951 cites W4280596151 @default.
- W4289012951 doi "https://doi.org/10.1101/2022.07.28.22277288" @default.
- W4289012951 hasPublicationYear "2022" @default.
- W4289012951 type Work @default.
- W4289012951 citedByCount "2" @default.
- W4289012951 countsByYear W42890129512023 @default.
- W4289012951 crossrefType "posted-content" @default.
- W4289012951 hasAuthorship W4289012951A5000554104 @default.
- W4289012951 hasAuthorship W4289012951A5010589327 @default.
- W4289012951 hasAuthorship W4289012951A5016512818 @default.
- W4289012951 hasAuthorship W4289012951A5018843444 @default.
- W4289012951 hasAuthorship W4289012951A5020686054 @default.
- W4289012951 hasAuthorship W4289012951A5022783154 @default.
- W4289012951 hasAuthorship W4289012951A5025409813 @default.
- W4289012951 hasAuthorship W4289012951A5035448242 @default.
- W4289012951 hasAuthorship W4289012951A5036777611 @default.
- W4289012951 hasAuthorship W4289012951A5041644263 @default.
- W4289012951 hasAuthorship W4289012951A5048906700 @default.
- W4289012951 hasAuthorship W4289012951A5053258271 @default.
- W4289012951 hasAuthorship W4289012951A5053522042 @default.
- W4289012951 hasAuthorship W4289012951A5054579793 @default.
- W4289012951 hasAuthorship W4289012951A5056553215 @default.
- W4289012951 hasAuthorship W4289012951A5060947645 @default.