Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289080003> ?p ?o ?g. }
- W4289080003 endingPage "100817" @default.
- W4289080003 startingPage "100817" @default.
- W4289080003 abstract "Spatial mapping of forests canopy height (Hcanopy) provides an opportunity to assess above-ground biomass, net primary productivity, carbon dioxide (CO2) sequestration, biodiversity conservation and forest fire risks. This study incorporated a continuous coverage of multi-spectral optical and synthetic aperture radar (SAR) along with sparsely global ecosystem dynamics investigation (GEDI) spaceborne Light Detection and Ranging (LiDAR) data in the machine learning (ML) models for mapping Hcanopy in the mixed tropical forests of Shoolpaneshwar wildlife sanctuary (SWLS), Gujarat, India. We trained seven ML models, including quantile random forest (QRF), support vector machine (SVM), Bayesian regularization for feed-forward neural networks (BRNN), conditional inference random forest (Cforest), Extreme gradient boosting (Xgbtree), multivariate adaptive regression splines (MARS), and k-nearest neighbors (KNN) using GEDI_02A extracted Hcanopy as training data. We used predictors which were extracted from LiDAR (GEDI metrics), multispectral optical (Landsat -8, Sentinel-2), and SAR (ALOS-2/PALSAR-2, Sentinel-1). A 10-fold cross-validation (CV) resampling was used to avoid overfitting or underfitting. The comparison of the models performances shows that the BRNN model has the highest satisfactory accuracy metrics, such as root mean square error (RMSE) of 4.686 m, R-squared (R2) of 0.49 and mean absolute error (MAE) of 3.66 m. Low training samples of tall canopies (>25 m), presence of mixed vegetation, geometric and structural variability and sloppy terrain of SWLS possibly restricted models from performing well. Field validation shows an R2 of 0.55, satisfactory for mixed tropical forests using spaceborne LiDAR. The present work provides insights into using spaceborne LiDAR GEDI data with optical and SAR data for Hcanopy mapping through ML models, which help to manage SWLS and further implications of forest Hcanopy mapping over large spatial scales." @default.
- W4289080003 created "2022-08-01" @default.
- W4289080003 creator A5013444052 @default.
- W4289080003 creator A5071405456 @default.
- W4289080003 date "2022-08-01" @default.
- W4289080003 modified "2023-10-18" @default.
- W4289080003 title "Mixed tropical forests canopy height mapping from spaceborne LiDAR GEDI and multisensor imagery using machine learning models" @default.
- W4289080003 cites W1964647807 @default.
- W4289080003 cites W1977670320 @default.
- W4289080003 cites W1981263865 @default.
- W4289080003 cites W1995234545 @default.
- W4289080003 cites W2000102737 @default.
- W4289080003 cites W2000613913 @default.
- W4289080003 cites W2011010318 @default.
- W4289080003 cites W2045102154 @default.
- W4289080003 cites W2048304242 @default.
- W4289080003 cites W2052700773 @default.
- W4289080003 cites W2059523177 @default.
- W4289080003 cites W2063623478 @default.
- W4289080003 cites W2098823605 @default.
- W4289080003 cites W2111363125 @default.
- W4289080003 cites W2132108972 @default.
- W4289080003 cites W2147475079 @default.
- W4289080003 cites W2156374693 @default.
- W4289080003 cites W2156665896 @default.
- W4289080003 cites W2162298841 @default.
- W4289080003 cites W2537504540 @default.
- W4289080003 cites W2550139446 @default.
- W4289080003 cites W2605456139 @default.
- W4289080003 cites W2725897987 @default.
- W4289080003 cites W2751581825 @default.
- W4289080003 cites W2784327149 @default.
- W4289080003 cites W2792648207 @default.
- W4289080003 cites W2793927960 @default.
- W4289080003 cites W2899208923 @default.
- W4289080003 cites W2914484644 @default.
- W4289080003 cites W2941740761 @default.
- W4289080003 cites W2953081360 @default.
- W4289080003 cites W3005299837 @default.
- W4289080003 cites W3010956878 @default.
- W4289080003 cites W3012679073 @default.
- W4289080003 cites W3094643344 @default.
- W4289080003 cites W3117603577 @default.
- W4289080003 cites W3118822061 @default.
- W4289080003 cites W3118969018 @default.
- W4289080003 cites W3122044641 @default.
- W4289080003 cites W3128484937 @default.
- W4289080003 cites W3145957422 @default.
- W4289080003 cites W3156622514 @default.
- W4289080003 cites W3198237269 @default.
- W4289080003 cites W4248268077 @default.
- W4289080003 doi "https://doi.org/10.1016/j.rsase.2022.100817" @default.
- W4289080003 hasPublicationYear "2022" @default.
- W4289080003 type Work @default.
- W4289080003 citedByCount "1" @default.
- W4289080003 countsByYear W42890800032023 @default.
- W4289080003 crossrefType "journal-article" @default.
- W4289080003 hasAuthorship W4289080003A5013444052 @default.
- W4289080003 hasAuthorship W4289080003A5071405456 @default.
- W4289080003 hasConcept C105795698 @default.
- W4289080003 hasConcept C12267149 @default.
- W4289080003 hasConcept C139945424 @default.
- W4289080003 hasConcept C154945302 @default.
- W4289080003 hasConcept C169258074 @default.
- W4289080003 hasConcept C173163844 @default.
- W4289080003 hasConcept C205649164 @default.
- W4289080003 hasConcept C33923547 @default.
- W4289080003 hasConcept C39432304 @default.
- W4289080003 hasConcept C41008148 @default.
- W4289080003 hasConcept C51399673 @default.
- W4289080003 hasConcept C62649853 @default.
- W4289080003 hasConcept C87360688 @default.
- W4289080003 hasConceptScore W4289080003C105795698 @default.
- W4289080003 hasConceptScore W4289080003C12267149 @default.
- W4289080003 hasConceptScore W4289080003C139945424 @default.
- W4289080003 hasConceptScore W4289080003C154945302 @default.
- W4289080003 hasConceptScore W4289080003C169258074 @default.
- W4289080003 hasConceptScore W4289080003C173163844 @default.
- W4289080003 hasConceptScore W4289080003C205649164 @default.
- W4289080003 hasConceptScore W4289080003C33923547 @default.
- W4289080003 hasConceptScore W4289080003C39432304 @default.
- W4289080003 hasConceptScore W4289080003C41008148 @default.
- W4289080003 hasConceptScore W4289080003C51399673 @default.
- W4289080003 hasConceptScore W4289080003C62649853 @default.
- W4289080003 hasConceptScore W4289080003C87360688 @default.
- W4289080003 hasLocation W42890800031 @default.
- W4289080003 hasOpenAccess W4289080003 @default.
- W4289080003 hasPrimaryLocation W42890800031 @default.
- W4289080003 hasRelatedWork W2006750359 @default.
- W4289080003 hasRelatedWork W2134361702 @default.
- W4289080003 hasRelatedWork W2768326488 @default.
- W4289080003 hasRelatedWork W2900835529 @default.
- W4289080003 hasRelatedWork W2950005168 @default.
- W4289080003 hasRelatedWork W2960267326 @default.
- W4289080003 hasRelatedWork W2985405857 @default.
- W4289080003 hasRelatedWork W3000058646 @default.
- W4289080003 hasRelatedWork W3080429710 @default.
- W4289080003 hasRelatedWork W4211143819 @default.