Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289080015> ?p ?o ?g. }
- W4289080015 endingPage "112175" @default.
- W4289080015 startingPage "112175" @default.
- W4289080015 abstract "In materials science, X-ray micro-computed tomography (μCT) imagery provides a unique tool for quantitative and qualitative characterization of structure and performance. The tomographic analysis relies on the segmentation of large data sets to produce quantifiable volumes, a highly time-intensive process. Great progress has been observed in developing robust and efficient segmentation techniques, and machine learning currently stands out as a powerful segmentation tool. These methods have demonstrated excellent performance when applied to various materials. However, the performance of such methods heavily relies on the amount of ground truth data. This presents a great challenge in image segmentation since the amount of a priori raw images can be limited by sample cost and size. Additionally, manual labeling of data sets is often very time-intensive and can be subjected to human error. Therefore, a machine learning method is needed which achieves high segmentation accuracies for reduced training data sets. To this end, we have offered a stochastic method for producing variations of the training images that will retain the important class-wide features and thereby enrich the machine learning's “understanding” of the variabilities. The proposed method can significantly increase the final overall accuracy. We found that by enlarging the initial training set by additional realizations, we were able to improve the average accuracy of segmentation from 81.1% to 90.0% for a very complex Mg-based alloy. The results of this study show that it is possible to increase the accuracy of predictions in imaging from X-ray microscopy using machine learning methods when enough data are not available." @default.
- W4289080015 created "2022-08-01" @default.
- W4289080015 creator A5013163644 @default.
- W4289080015 creator A5019495780 @default.
- W4289080015 creator A5072309711 @default.
- W4289080015 creator A5079372989 @default.
- W4289080015 date "2022-10-01" @default.
- W4289080015 modified "2023-10-13" @default.
- W4289080015 title "Deep-layers-assisted machine learning for accurate image segmentation of complex materials" @default.
- W4289080015 cites W1963483517 @default.
- W4289080015 cites W1966702276 @default.
- W4289080015 cites W1970401841 @default.
- W4289080015 cites W1983483342 @default.
- W4289080015 cites W1987983010 @default.
- W4289080015 cites W1990078496 @default.
- W4289080015 cites W1995277257 @default.
- W4289080015 cites W2003591762 @default.
- W4289080015 cites W2007618222 @default.
- W4289080015 cites W2009928192 @default.
- W4289080015 cites W2012181940 @default.
- W4289080015 cites W2018001544 @default.
- W4289080015 cites W2030223767 @default.
- W4289080015 cites W2034209188 @default.
- W4289080015 cites W2040165631 @default.
- W4289080015 cites W2047112057 @default.
- W4289080015 cites W2053922498 @default.
- W4289080015 cites W2054955428 @default.
- W4289080015 cites W2058921564 @default.
- W4289080015 cites W2091531252 @default.
- W4289080015 cites W2117539524 @default.
- W4289080015 cites W2123968250 @default.
- W4289080015 cites W2126609373 @default.
- W4289080015 cites W2140252758 @default.
- W4289080015 cites W2141173661 @default.
- W4289080015 cites W2154940804 @default.
- W4289080015 cites W2156385557 @default.
- W4289080015 cites W2170249894 @default.
- W4289080015 cites W2248723555 @default.
- W4289080015 cites W2331229389 @default.
- W4289080015 cites W2334238442 @default.
- W4289080015 cites W2345366302 @default.
- W4289080015 cites W2580598422 @default.
- W4289080015 cites W2589275787 @default.
- W4289080015 cites W2624921725 @default.
- W4289080015 cites W2747060304 @default.
- W4289080015 cites W2756207343 @default.
- W4289080015 cites W2790164319 @default.
- W4289080015 cites W2793411664 @default.
- W4289080015 cites W2796672611 @default.
- W4289080015 cites W2802496077 @default.
- W4289080015 cites W2803014186 @default.
- W4289080015 cites W2804860796 @default.
- W4289080015 cites W2805622899 @default.
- W4289080015 cites W2911268982 @default.
- W4289080015 cites W2919115771 @default.
- W4289080015 cites W2962403043 @default.
- W4289080015 cites W2965529076 @default.
- W4289080015 cites W2982988962 @default.
- W4289080015 cites W2986117208 @default.
- W4289080015 cites W3003248584 @default.
- W4289080015 cites W3008712016 @default.
- W4289080015 cites W3012540921 @default.
- W4289080015 cites W3018652399 @default.
- W4289080015 cites W3030577207 @default.
- W4289080015 cites W3080577677 @default.
- W4289080015 cites W3130738307 @default.
- W4289080015 cites W3142827233 @default.
- W4289080015 cites W3162234493 @default.
- W4289080015 cites W4245193022 @default.
- W4289080015 cites W4252410133 @default.
- W4289080015 doi "https://doi.org/10.1016/j.matchar.2022.112175" @default.
- W4289080015 hasPublicationYear "2022" @default.
- W4289080015 type Work @default.
- W4289080015 citedByCount "4" @default.
- W4289080015 countsByYear W42890800152023 @default.
- W4289080015 crossrefType "journal-article" @default.
- W4289080015 hasAuthorship W4289080015A5013163644 @default.
- W4289080015 hasAuthorship W4289080015A5019495780 @default.
- W4289080015 hasAuthorship W4289080015A5072309711 @default.
- W4289080015 hasAuthorship W4289080015A5079372989 @default.
- W4289080015 hasBestOaLocation W42890800151 @default.
- W4289080015 hasConcept C111472728 @default.
- W4289080015 hasConcept C111919701 @default.
- W4289080015 hasConcept C119857082 @default.
- W4289080015 hasConcept C124504099 @default.
- W4289080015 hasConcept C132964779 @default.
- W4289080015 hasConcept C138885662 @default.
- W4289080015 hasConcept C146849305 @default.
- W4289080015 hasConcept C153180895 @default.
- W4289080015 hasConcept C154945302 @default.
- W4289080015 hasConcept C177264268 @default.
- W4289080015 hasConcept C185592680 @default.
- W4289080015 hasConcept C198531522 @default.
- W4289080015 hasConcept C199360897 @default.
- W4289080015 hasConcept C41008148 @default.
- W4289080015 hasConcept C43617362 @default.
- W4289080015 hasConcept C58489278 @default.
- W4289080015 hasConcept C75553542 @default.