Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289100314> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4289100314 abstract "We prove that a formula predicted on the basis of non-rigorous physics arguments [Zdeborova and Krzakala: Phys. Rev. E (2007)] provides a lower bound on the chromatic number of sparse random graphs. The proof is based on the interpolation method from mathematical physics. In the case of random regular graphs the lower bound can be expressed algebraically, while in the case of the binomial random we obtain a variational formula. As an application we calculate improved explicit lower bounds on the chromatic number of random graphs for small (average) degrees. Additionally, show how asymptotic formulas for large degrees that were previously obtained by lengthy and complicated combinatorial arguments can be re-derived easily from these new results." @default.
- W4289100314 created "2022-08-01" @default.
- W4289100314 creator A5031194096 @default.
- W4289100314 creator A5044991483 @default.
- W4289100314 creator A5049935647 @default.
- W4289100314 date "2018-12-23" @default.
- W4289100314 modified "2023-09-26" @default.
- W4289100314 title "Lower bounds on the chromatic number of random graphs" @default.
- W4289100314 doi "https://doi.org/10.48550/arxiv.1812.09691" @default.
- W4289100314 hasPublicationYear "2018" @default.
- W4289100314 type Work @default.
- W4289100314 citedByCount "0" @default.
- W4289100314 crossrefType "posted-content" @default.
- W4289100314 hasAuthorship W4289100314A5031194096 @default.
- W4289100314 hasAuthorship W4289100314A5044991483 @default.
- W4289100314 hasAuthorship W4289100314A5049935647 @default.
- W4289100314 hasBestOaLocation W42891003141 @default.
- W4289100314 hasConcept C105795698 @default.
- W4289100314 hasConcept C114614502 @default.
- W4289100314 hasConcept C118615104 @default.
- W4289100314 hasConcept C121684516 @default.
- W4289100314 hasConcept C132525143 @default.
- W4289100314 hasConcept C134306372 @default.
- W4289100314 hasConcept C137800194 @default.
- W4289100314 hasConcept C196956537 @default.
- W4289100314 hasConcept C2781315470 @default.
- W4289100314 hasConcept C33923547 @default.
- W4289100314 hasConcept C41008148 @default.
- W4289100314 hasConcept C47458327 @default.
- W4289100314 hasConcept C502989409 @default.
- W4289100314 hasConcept C77553402 @default.
- W4289100314 hasConceptScore W4289100314C105795698 @default.
- W4289100314 hasConceptScore W4289100314C114614502 @default.
- W4289100314 hasConceptScore W4289100314C118615104 @default.
- W4289100314 hasConceptScore W4289100314C121684516 @default.
- W4289100314 hasConceptScore W4289100314C132525143 @default.
- W4289100314 hasConceptScore W4289100314C134306372 @default.
- W4289100314 hasConceptScore W4289100314C137800194 @default.
- W4289100314 hasConceptScore W4289100314C196956537 @default.
- W4289100314 hasConceptScore W4289100314C2781315470 @default.
- W4289100314 hasConceptScore W4289100314C33923547 @default.
- W4289100314 hasConceptScore W4289100314C41008148 @default.
- W4289100314 hasConceptScore W4289100314C47458327 @default.
- W4289100314 hasConceptScore W4289100314C502989409 @default.
- W4289100314 hasConceptScore W4289100314C77553402 @default.
- W4289100314 hasLocation W42891003141 @default.
- W4289100314 hasOpenAccess W4289100314 @default.
- W4289100314 hasPrimaryLocation W42891003141 @default.
- W4289100314 hasRelatedWork W2043525791 @default.
- W4289100314 hasRelatedWork W2158211033 @default.
- W4289100314 hasRelatedWork W2905876360 @default.
- W4289100314 hasRelatedWork W2963726605 @default.
- W4289100314 hasRelatedWork W3111919216 @default.
- W4289100314 hasRelatedWork W3210957655 @default.
- W4289100314 hasRelatedWork W4289100314 @default.
- W4289100314 hasRelatedWork W4297960775 @default.
- W4289100314 hasRelatedWork W1762502420 @default.
- W4289100314 hasRelatedWork W2133985202 @default.
- W4289100314 isParatext "false" @default.
- W4289100314 isRetracted "false" @default.
- W4289100314 workType "article" @default.