Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289104893> ?p ?o ?g. }
- W4289104893 endingPage "39" @default.
- W4289104893 startingPage "1" @default.
- W4289104893 abstract "We propose an algorithm to impute and forecast a time series by transforming the observed time series into a matrix, utilizing matrix estimation to recover missing values and de-noise observed entries, and performing linear regression to make predictions. At the core of our analysis is a representation result, which states that for a large class of models, the transformed time series matrix is (approximately) low-rank. In effect, this generalizes the widely used Singular Spectrum Analysis (SSA) in the time series literature, and allows us to establish a rigorous link between time series analysis and matrix estimation. The key to establishing this link is constructing a Page matrix with non-overlapping entries rather than a Hankel matrix as is commonly done in the literature (e.g., SSA). This particular matrix structure allows us to provide finite sample analysis for imputation and prediction, and prove the asymptotic consistency of our method. Another salient feature of our algorithm is that it is model agnostic with respect to both the underlying time dynamics and the noise distribution in the observations. The noise agnostic property of our approach allows us to recover the latent states when only given access to noisy and partial observations a la a Hidden Markov Model; e.g., recovering the time-varying parameter of a Poisson process without knowing that the underlying process is Poisson. Furthermore, since our forecasting algorithm requires regression with noisy features, our approach suggests a matrix estimation based method-coupled with a novel, non-standard matrix estimation error metric-to solve the error-in-variable regression problem, which could be of interest in its own right. Through synthetic and real-world datasets, we demonstrate that our algorithm outperforms standard software packages (including R libraries) in the presence of missing data as well as high levels of noise." @default.
- W4289104893 created "2022-08-01" @default.
- W4289104893 creator A5029499294 @default.
- W4289104893 creator A5035593501 @default.
- W4289104893 creator A5038657171 @default.
- W4289104893 creator A5089100336 @default.
- W4289104893 date "2018-12-21" @default.
- W4289104893 modified "2023-10-17" @default.
- W4289104893 title "Model Agnostic Time Series Analysis via Matrix Estimation" @default.
- W4289104893 cites W1963718895 @default.
- W4289104893 cites W1996023858 @default.
- W4289104893 cites W2000157792 @default.
- W4289104893 cites W2007321142 @default.
- W4289104893 cites W2036317923 @default.
- W4289104893 cites W2057990756 @default.
- W4289104893 cites W2099210013 @default.
- W4289104893 cites W2102426343 @default.
- W4289104893 cites W2105934661 @default.
- W4289104893 cites W2118633451 @default.
- W4289104893 cites W2119546029 @default.
- W4289104893 cites W2132119275 @default.
- W4289104893 cites W2133762042 @default.
- W4289104893 cites W2134332047 @default.
- W4289104893 cites W2151223736 @default.
- W4289104893 cites W2155630722 @default.
- W4289104893 cites W2171573637 @default.
- W4289104893 cites W2219655028 @default.
- W4289104893 cites W2403659767 @default.
- W4289104893 cites W2616032753 @default.
- W4289104893 cites W2770109286 @default.
- W4289104893 cites W2962725216 @default.
- W4289104893 cites W2963943660 @default.
- W4289104893 cites W2964200481 @default.
- W4289104893 cites W3010434925 @default.
- W4289104893 cites W4231057675 @default.
- W4289104893 cites W4232129301 @default.
- W4289104893 cites W4234550579 @default.
- W4289104893 cites W4239199982 @default.
- W4289104893 doi "https://doi.org/10.1145/3287319" @default.
- W4289104893 hasPublicationYear "2018" @default.
- W4289104893 type Work @default.
- W4289104893 citedByCount "13" @default.
- W4289104893 countsByYear W42891048932019 @default.
- W4289104893 countsByYear W42891048932020 @default.
- W4289104893 countsByYear W42891048932021 @default.
- W4289104893 countsByYear W42891048932022 @default.
- W4289104893 countsByYear W42891048932023 @default.
- W4289104893 crossrefType "journal-article" @default.
- W4289104893 hasAuthorship W4289104893A5029499294 @default.
- W4289104893 hasAuthorship W4289104893A5035593501 @default.
- W4289104893 hasAuthorship W4289104893A5038657171 @default.
- W4289104893 hasAuthorship W4289104893A5089100336 @default.
- W4289104893 hasBestOaLocation W42891048932 @default.
- W4289104893 hasConcept C105795698 @default.
- W4289104893 hasConcept C106487976 @default.
- W4289104893 hasConcept C11413529 @default.
- W4289104893 hasConcept C121332964 @default.
- W4289104893 hasConcept C134306372 @default.
- W4289104893 hasConcept C136272165 @default.
- W4289104893 hasConcept C143724316 @default.
- W4289104893 hasConcept C151406439 @default.
- W4289104893 hasConcept C151730666 @default.
- W4289104893 hasConcept C159985019 @default.
- W4289104893 hasConcept C163716315 @default.
- W4289104893 hasConcept C192562407 @default.
- W4289104893 hasConcept C22789450 @default.
- W4289104893 hasConcept C25023664 @default.
- W4289104893 hasConcept C2778459887 @default.
- W4289104893 hasConcept C33923547 @default.
- W4289104893 hasConcept C41008148 @default.
- W4289104893 hasConcept C62520636 @default.
- W4289104893 hasConcept C86803240 @default.
- W4289104893 hasConceptScore W4289104893C105795698 @default.
- W4289104893 hasConceptScore W4289104893C106487976 @default.
- W4289104893 hasConceptScore W4289104893C11413529 @default.
- W4289104893 hasConceptScore W4289104893C121332964 @default.
- W4289104893 hasConceptScore W4289104893C134306372 @default.
- W4289104893 hasConceptScore W4289104893C136272165 @default.
- W4289104893 hasConceptScore W4289104893C143724316 @default.
- W4289104893 hasConceptScore W4289104893C151406439 @default.
- W4289104893 hasConceptScore W4289104893C151730666 @default.
- W4289104893 hasConceptScore W4289104893C159985019 @default.
- W4289104893 hasConceptScore W4289104893C163716315 @default.
- W4289104893 hasConceptScore W4289104893C192562407 @default.
- W4289104893 hasConceptScore W4289104893C22789450 @default.
- W4289104893 hasConceptScore W4289104893C25023664 @default.
- W4289104893 hasConceptScore W4289104893C2778459887 @default.
- W4289104893 hasConceptScore W4289104893C33923547 @default.
- W4289104893 hasConceptScore W4289104893C41008148 @default.
- W4289104893 hasConceptScore W4289104893C62520636 @default.
- W4289104893 hasConceptScore W4289104893C86803240 @default.
- W4289104893 hasIssue "3" @default.
- W4289104893 hasLocation W42891048931 @default.
- W4289104893 hasLocation W42891048932 @default.
- W4289104893 hasLocation W42891048933 @default.
- W4289104893 hasOpenAccess W4289104893 @default.
- W4289104893 hasPrimaryLocation W42891048931 @default.
- W4289104893 hasRelatedWork W1972973662 @default.