Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289109719> ?p ?o ?g. }
- W4289109719 endingPage "2400" @default.
- W4289109719 startingPage "2400" @default.
- W4289109719 abstract "The chip manufacturing of integrated circuits requires the participation of multiple parties, which greatly increases the possibility of hardware Trojan insertion and poses a significant threat to the entire hardware device landing; however, traditional hardware Trojan detection methods require gold chips, so the detection cost is relatively high. The attention mechanism can extract data with more adequate features, which can enhance the expressiveness of the network. This paper combines an attention module with a multilayer perceptron and convolutional neural network for hardware Trojan detection based on side-channel information, and evaluates the detection results by implementing specific experiments. The results show that the proposed method significantly outperforms machine learning classification methods and network-related methods, such as SVM and KNN, in terms of accuracy, precision, recall, and F1 value. In addition, the proposed method is effective in detecting data containing one or multiple hardware Trojans, and shows high sensitivity to the size of datasets." @default.
- W4289109719 created "2022-08-01" @default.
- W4289109719 creator A5012948983 @default.
- W4289109719 creator A5024758498 @default.
- W4289109719 creator A5074674627 @default.
- W4289109719 creator A5085364708 @default.
- W4289109719 date "2022-07-31" @default.
- W4289109719 modified "2023-10-14" @default.
- W4289109719 title "A Deep Learning Method Based on the Attention Mechanism for Hardware Trojan Detection" @default.
- W4289109719 cites W1565539145 @default.
- W4289109719 cites W1970885193 @default.
- W4289109719 cites W1994094562 @default.
- W4289109719 cites W2024436253 @default.
- W4289109719 cites W2072005378 @default.
- W4289109719 cites W2079529953 @default.
- W4289109719 cites W2085842814 @default.
- W4289109719 cites W2094691152 @default.
- W4289109719 cites W2103509612 @default.
- W4289109719 cites W2113436456 @default.
- W4289109719 cites W2125239440 @default.
- W4289109719 cites W2131570398 @default.
- W4289109719 cites W2161856614 @default.
- W4289109719 cites W2221643708 @default.
- W4289109719 cites W2274193143 @default.
- W4289109719 cites W2395747866 @default.
- W4289109719 cites W2464661970 @default.
- W4289109719 cites W2472536324 @default.
- W4289109719 cites W2473120195 @default.
- W4289109719 cites W2581963379 @default.
- W4289109719 cites W2631809927 @default.
- W4289109719 cites W2739579953 @default.
- W4289109719 cites W2801379610 @default.
- W4289109719 cites W2809254203 @default.
- W4289109719 cites W2823310453 @default.
- W4289109719 cites W2886429972 @default.
- W4289109719 cites W2890488666 @default.
- W4289109719 cites W2891378626 @default.
- W4289109719 cites W2903337714 @default.
- W4289109719 cites W2904709263 @default.
- W4289109719 cites W2911644226 @default.
- W4289109719 cites W2912425510 @default.
- W4289109719 cites W2913406411 @default.
- W4289109719 cites W2913776665 @default.
- W4289109719 cites W2925209208 @default.
- W4289109719 cites W3000731494 @default.
- W4289109719 cites W3003925039 @default.
- W4289109719 cites W3011462110 @default.
- W4289109719 cites W3043809678 @default.
- W4289109719 cites W3112299287 @default.
- W4289109719 cites W3114336057 @default.
- W4289109719 cites W3146366485 @default.
- W4289109719 cites W3190460267 @default.
- W4289109719 cites W4220964139 @default.
- W4289109719 cites W4282973335 @default.
- W4289109719 cites W4293649366 @default.
- W4289109719 doi "https://doi.org/10.3390/electronics11152400" @default.
- W4289109719 hasPublicationYear "2022" @default.
- W4289109719 type Work @default.
- W4289109719 citedByCount "1" @default.
- W4289109719 countsByYear W42891097192023 @default.
- W4289109719 crossrefType "journal-article" @default.
- W4289109719 hasAuthorship W4289109719A5012948983 @default.
- W4289109719 hasAuthorship W4289109719A5024758498 @default.
- W4289109719 hasAuthorship W4289109719A5074674627 @default.
- W4289109719 hasAuthorship W4289109719A5085364708 @default.
- W4289109719 hasBestOaLocation W42891097191 @default.
- W4289109719 hasConcept C108583219 @default.
- W4289109719 hasConcept C12267149 @default.
- W4289109719 hasConcept C149635348 @default.
- W4289109719 hasConcept C154945302 @default.
- W4289109719 hasConcept C174333608 @default.
- W4289109719 hasConcept C2780873074 @default.
- W4289109719 hasConcept C38652104 @default.
- W4289109719 hasConcept C41008148 @default.
- W4289109719 hasConcept C50644808 @default.
- W4289109719 hasConcept C60908668 @default.
- W4289109719 hasConcept C81363708 @default.
- W4289109719 hasConcept C9390403 @default.
- W4289109719 hasConceptScore W4289109719C108583219 @default.
- W4289109719 hasConceptScore W4289109719C12267149 @default.
- W4289109719 hasConceptScore W4289109719C149635348 @default.
- W4289109719 hasConceptScore W4289109719C154945302 @default.
- W4289109719 hasConceptScore W4289109719C174333608 @default.
- W4289109719 hasConceptScore W4289109719C2780873074 @default.
- W4289109719 hasConceptScore W4289109719C38652104 @default.
- W4289109719 hasConceptScore W4289109719C41008148 @default.
- W4289109719 hasConceptScore W4289109719C50644808 @default.
- W4289109719 hasConceptScore W4289109719C60908668 @default.
- W4289109719 hasConceptScore W4289109719C81363708 @default.
- W4289109719 hasConceptScore W4289109719C9390403 @default.
- W4289109719 hasFunder F4320323993 @default.
- W4289109719 hasIssue "15" @default.
- W4289109719 hasLocation W42891097191 @default.
- W4289109719 hasLocation W42891097192 @default.
- W4289109719 hasOpenAccess W4289109719 @default.
- W4289109719 hasPrimaryLocation W42891097191 @default.
- W4289109719 hasRelatedWork W2065973962 @default.
- W4289109719 hasRelatedWork W2082460678 @default.