Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289130143> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4289130143 endingPage "2601" @default.
- W4289130143 startingPage "2585" @default.
- W4289130143 abstract "In agricultural engineering, the main challenge is on methodologies used for disease detection. The manual methods depend on the experience of the personal. Due to large variation in environmental condition, disease diagnosis and classification becomes a challenging task. Apart from the disease, the leaves are affected by climate changes which is hard for the image processing method to discriminate the disease from the other background. In Cucurbita gourd family, the disease severity examination of leaf samples through computer vision, and deep learning methodologies have gained popularity in recent years. In this paper, a hybrid method based on Convolutional Neural Network (CNN) is proposed for automatic pumpkin leaf image classification. The Proposed Denoising and deep Convolutional Neural Network (CNN) method enhances the Pumpkin Leaf Pre-processing and diagnosis. Real time data base was used for training and testing of the proposed work. Investigation on existing pre-trained network Alexnet and googlenet was investigated is done to evaluate the performance of the proposed method. The system and computer simulations were performed using Matlab tool." @default.
- W4289130143 created "2022-08-01" @default.
- W4289130143 creator A5025438072 @default.
- W4289130143 creator A5085646678 @default.
- W4289130143 date "2023-01-01" @default.
- W4289130143 modified "2023-10-05" @default.
- W4289130143 title "Hybrid Deep Learning Method for Diagnosis of Cucurbita Leaf Diseases" @default.
- W4289130143 cites W2019610851 @default.
- W4289130143 cites W2068486652 @default.
- W4289130143 cites W2093593228 @default.
- W4289130143 cites W2113535968 @default.
- W4289130143 cites W2119605086 @default.
- W4289130143 cites W2127112036 @default.
- W4289130143 cites W2145887856 @default.
- W4289130143 cites W2146572184 @default.
- W4289130143 cites W2293491734 @default.
- W4289130143 cites W2319902369 @default.
- W4289130143 cites W2322878586 @default.
- W4289130143 cites W2405348951 @default.
- W4289130143 cites W2490548105 @default.
- W4289130143 cites W2548258044 @default.
- W4289130143 cites W2768102683 @default.
- W4289130143 cites W2790578909 @default.
- W4289130143 cites W2792362452 @default.
- W4289130143 cites W2792469128 @default.
- W4289130143 cites W2895698828 @default.
- W4289130143 cites W2922925339 @default.
- W4289130143 cites W2944599236 @default.
- W4289130143 cites W2991935909 @default.
- W4289130143 doi "https://doi.org/10.32604/csse.2023.027512" @default.
- W4289130143 hasPublicationYear "2023" @default.
- W4289130143 type Work @default.
- W4289130143 citedByCount "1" @default.
- W4289130143 countsByYear W42891301432023 @default.
- W4289130143 crossrefType "journal-article" @default.
- W4289130143 hasAuthorship W4289130143A5025438072 @default.
- W4289130143 hasAuthorship W4289130143A5085646678 @default.
- W4289130143 hasBestOaLocation W42891301431 @default.
- W4289130143 hasConcept C108583219 @default.
- W4289130143 hasConcept C115961682 @default.
- W4289130143 hasConcept C119857082 @default.
- W4289130143 hasConcept C153180895 @default.
- W4289130143 hasConcept C154945302 @default.
- W4289130143 hasConcept C2780869770 @default.
- W4289130143 hasConcept C41008148 @default.
- W4289130143 hasConcept C50644808 @default.
- W4289130143 hasConcept C59822182 @default.
- W4289130143 hasConcept C75294576 @default.
- W4289130143 hasConcept C81363708 @default.
- W4289130143 hasConcept C86803240 @default.
- W4289130143 hasConcept C9417928 @default.
- W4289130143 hasConceptScore W4289130143C108583219 @default.
- W4289130143 hasConceptScore W4289130143C115961682 @default.
- W4289130143 hasConceptScore W4289130143C119857082 @default.
- W4289130143 hasConceptScore W4289130143C153180895 @default.
- W4289130143 hasConceptScore W4289130143C154945302 @default.
- W4289130143 hasConceptScore W4289130143C2780869770 @default.
- W4289130143 hasConceptScore W4289130143C41008148 @default.
- W4289130143 hasConceptScore W4289130143C50644808 @default.
- W4289130143 hasConceptScore W4289130143C59822182 @default.
- W4289130143 hasConceptScore W4289130143C75294576 @default.
- W4289130143 hasConceptScore W4289130143C81363708 @default.
- W4289130143 hasConceptScore W4289130143C86803240 @default.
- W4289130143 hasConceptScore W4289130143C9417928 @default.
- W4289130143 hasIssue "3" @default.
- W4289130143 hasLocation W42891301431 @default.
- W4289130143 hasOpenAccess W4289130143 @default.
- W4289130143 hasPrimaryLocation W42891301431 @default.
- W4289130143 hasRelatedWork W2470368200 @default.
- W4289130143 hasRelatedWork W2766604260 @default.
- W4289130143 hasRelatedWork W2912288872 @default.
- W4289130143 hasRelatedWork W2986507176 @default.
- W4289130143 hasRelatedWork W2996856019 @default.
- W4289130143 hasRelatedWork W3018421652 @default.
- W4289130143 hasRelatedWork W3160224718 @default.
- W4289130143 hasRelatedWork W3160711233 @default.
- W4289130143 hasRelatedWork W4220996320 @default.
- W4289130143 hasRelatedWork W4281780675 @default.
- W4289130143 hasVolume "44" @default.
- W4289130143 isParatext "false" @default.
- W4289130143 isRetracted "false" @default.
- W4289130143 workType "article" @default.