Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289130149> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4289130149 endingPage "2456" @default.
- W4289130149 startingPage "2439" @default.
- W4289130149 abstract "One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics. Bigdata is created from social websites like Facebook, WhatsApp, Twitter, etc. Opinions about products, persons, initiatives, political issues, research achievements, and entertainment are discussed on social websites. The unique data analytics method cannot be applied to various social websites since the data formats are different. Several approaches, techniques, and tools have been used for big data analytics, opinion mining, or sentiment analysis, but the accuracy is yet to be improved. The proposed work is motivated to do sentiment analysis on Twitter data for cloth products using Simulated Annealing incorporated with the Multiclass Support Vector Machine (SA-MSVM) approach. SA-MSVM is a hybrid heuristic approach for selecting and classifying text-based sentimental words following the Natural Language Processing (NLP) process applied on tweets extracted from the Twitter dataset. A simulated annealing algorithm searches for relevant features and selects and identifies sentimental terms that customers criticize. SA-MSVM is implemented, experimented with MATLAB, and the results are verified. The results concluded that SA-MSVM has more potential in sentiment analysis and classification than the existing Support Vector Machine (SVM) approach. SA-MSVM has obtained 96.34% accuracy in classifying the product review compared with the existing systems." @default.
- W4289130149 created "2022-08-01" @default.
- W4289130149 creator A5048883548 @default.
- W4289130149 creator A5055861436 @default.
- W4289130149 date "2023-01-01" @default.
- W4289130149 modified "2023-10-18" @default.
- W4289130149 title "SA-MSVM: Hybrid Heuristic Algorithm-based Feature Selection for Sentiment Analysis in Twitter" @default.
- W4289130149 cites W1572786359 @default.
- W4289130149 cites W1979432867 @default.
- W4289130149 cites W2062913298 @default.
- W4289130149 cites W2321158871 @default.
- W4289130149 cites W2492583839 @default.
- W4289130149 cites W2512317583 @default.
- W4289130149 cites W2558316529 @default.
- W4289130149 cites W2594056497 @default.
- W4289130149 cites W2768163028 @default.
- W4289130149 cites W2796018820 @default.
- W4289130149 cites W2806345781 @default.
- W4289130149 cites W2808079449 @default.
- W4289130149 cites W2900946789 @default.
- W4289130149 cites W2910164082 @default.
- W4289130149 doi "https://doi.org/10.32604/csse.2023.029254" @default.
- W4289130149 hasPublicationYear "2023" @default.
- W4289130149 type Work @default.
- W4289130149 citedByCount "1" @default.
- W4289130149 countsByYear W42891301492022 @default.
- W4289130149 crossrefType "journal-article" @default.
- W4289130149 hasAuthorship W4289130149A5048883548 @default.
- W4289130149 hasAuthorship W4289130149A5055861436 @default.
- W4289130149 hasBestOaLocation W42891301491 @default.
- W4289130149 hasConcept C119857082 @default.
- W4289130149 hasConcept C12267149 @default.
- W4289130149 hasConcept C124101348 @default.
- W4289130149 hasConcept C126980161 @default.
- W4289130149 hasConcept C136764020 @default.
- W4289130149 hasConcept C148483581 @default.
- W4289130149 hasConcept C154945302 @default.
- W4289130149 hasConcept C173801870 @default.
- W4289130149 hasConcept C2522767166 @default.
- W4289130149 hasConcept C41008148 @default.
- W4289130149 hasConcept C518677369 @default.
- W4289130149 hasConcept C66402592 @default.
- W4289130149 hasConcept C75684735 @default.
- W4289130149 hasConcept C79158427 @default.
- W4289130149 hasConceptScore W4289130149C119857082 @default.
- W4289130149 hasConceptScore W4289130149C12267149 @default.
- W4289130149 hasConceptScore W4289130149C124101348 @default.
- W4289130149 hasConceptScore W4289130149C126980161 @default.
- W4289130149 hasConceptScore W4289130149C136764020 @default.
- W4289130149 hasConceptScore W4289130149C148483581 @default.
- W4289130149 hasConceptScore W4289130149C154945302 @default.
- W4289130149 hasConceptScore W4289130149C173801870 @default.
- W4289130149 hasConceptScore W4289130149C2522767166 @default.
- W4289130149 hasConceptScore W4289130149C41008148 @default.
- W4289130149 hasConceptScore W4289130149C518677369 @default.
- W4289130149 hasConceptScore W4289130149C66402592 @default.
- W4289130149 hasConceptScore W4289130149C75684735 @default.
- W4289130149 hasConceptScore W4289130149C79158427 @default.
- W4289130149 hasIssue "3" @default.
- W4289130149 hasLocation W42891301491 @default.
- W4289130149 hasOpenAccess W4289130149 @default.
- W4289130149 hasPrimaryLocation W42891301491 @default.
- W4289130149 hasRelatedWork W2337265393 @default.
- W4289130149 hasRelatedWork W2509056639 @default.
- W4289130149 hasRelatedWork W2777139086 @default.
- W4289130149 hasRelatedWork W2968635089 @default.
- W4289130149 hasRelatedWork W2999459970 @default.
- W4289130149 hasRelatedWork W3046252353 @default.
- W4289130149 hasRelatedWork W4287903834 @default.
- W4289130149 hasRelatedWork W4312793323 @default.
- W4289130149 hasRelatedWork W2345184372 @default.
- W4289130149 hasRelatedWork W2551093110 @default.
- W4289130149 hasVolume "44" @default.
- W4289130149 isParatext "false" @default.
- W4289130149 isRetracted "false" @default.
- W4289130149 workType "article" @default.