Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289132177> ?p ?o ?g. }
- W4289132177 endingPage "10" @default.
- W4289132177 startingPage "1" @default.
- W4289132177 abstract "As the development of smart grids is increasing, accurate electric load demand forecasting is becoming more important for power systems, because it plays a vital role to improve the performance of power companies in terms of less operating cost and reliable operation. Short-term load forecasting (STLF), which focuses on the prediction of few hours to one week ahead predictions and is also beneficial for unit commitment and cost-effective operation of smart power grids, is receiving increasing attention these days. Development and selection of an accurate forecast model from different artificial intelligence (AI)-based techniques and meta-heuristic algorithms for better accuracy is a challenging task. Deep Neural Network (DNN) is a group of intelligent computational algorithms which have a viable approach for modeling across multiple hidden layers and complex nonlinear relationships between variables. In this paper, a model for STLF using deep learning neural network (DNN) with feature selection is proposed. A wide range of intelligent forecast models was designed and tested based on multiple activation functions, such as hyperbolic tangent (tanh), different variants of rectifier linear unit (ReLU), and sigmoid. Among the others, DNN with leaky ReLu produced the best forecast accuracy. Regarding the precision of the methods used in this research work, certain output measures, such as absolute percentage error (MAPE), mean square error (MSE), and root mean square error (RMSE) are used. There was also a reliance on multiple parametric and variable details to determine the capability of the smart load forecasting techniques." @default.
- W4289132177 created "2022-08-01" @default.
- W4289132177 creator A5004849720 @default.
- W4289132177 creator A5073938714 @default.
- W4289132177 date "2022-07-31" @default.
- W4289132177 modified "2023-10-14" @default.
- W4289132177 title "Short-Term Electrical Load Demand Forecasting Based on LSTM and RNN Deep Neural Networks" @default.
- W4289132177 cites W1720804347 @default.
- W4289132177 cites W1826740954 @default.
- W4289132177 cites W2001165499 @default.
- W4289132177 cites W2003399840 @default.
- W4289132177 cites W2058641082 @default.
- W4289132177 cites W2127006037 @default.
- W4289132177 cites W2144335970 @default.
- W4289132177 cites W2562403923 @default.
- W4289132177 cites W2607959805 @default.
- W4289132177 cites W2626980207 @default.
- W4289132177 cites W2801606439 @default.
- W4289132177 cites W2809317444 @default.
- W4289132177 cites W2906033034 @default.
- W4289132177 cites W2907025617 @default.
- W4289132177 cites W2979665139 @default.
- W4289132177 cites W2983460976 @default.
- W4289132177 cites W2990474432 @default.
- W4289132177 cites W3011149747 @default.
- W4289132177 cites W3045300245 @default.
- W4289132177 cites W3104996215 @default.
- W4289132177 cites W3124887761 @default.
- W4289132177 cites W3217596308 @default.
- W4289132177 cites W4224295325 @default.
- W4289132177 cites W2942952488 @default.
- W4289132177 doi "https://doi.org/10.1155/2022/2316474" @default.
- W4289132177 hasPublicationYear "2022" @default.
- W4289132177 type Work @default.
- W4289132177 citedByCount "1" @default.
- W4289132177 countsByYear W42891321772022 @default.
- W4289132177 crossrefType "journal-article" @default.
- W4289132177 hasAuthorship W4289132177A5004849720 @default.
- W4289132177 hasAuthorship W4289132177A5073938714 @default.
- W4289132177 hasBestOaLocation W42891321771 @default.
- W4289132177 hasConcept C10558101 @default.
- W4289132177 hasConcept C105795698 @default.
- W4289132177 hasConcept C119599485 @default.
- W4289132177 hasConcept C119857082 @default.
- W4289132177 hasConcept C121332964 @default.
- W4289132177 hasConcept C127413603 @default.
- W4289132177 hasConcept C134306372 @default.
- W4289132177 hasConcept C139945424 @default.
- W4289132177 hasConcept C148483581 @default.
- W4289132177 hasConcept C150217764 @default.
- W4289132177 hasConcept C154945302 @default.
- W4289132177 hasConcept C163258240 @default.
- W4289132177 hasConcept C193809577 @default.
- W4289132177 hasConcept C33923547 @default.
- W4289132177 hasConcept C41008148 @default.
- W4289132177 hasConcept C42475967 @default.
- W4289132177 hasConcept C50644808 @default.
- W4289132177 hasConcept C62520636 @default.
- W4289132177 hasConcept C81388566 @default.
- W4289132177 hasConcept C89227174 @default.
- W4289132177 hasConcept C92047909 @default.
- W4289132177 hasConceptScore W4289132177C10558101 @default.
- W4289132177 hasConceptScore W4289132177C105795698 @default.
- W4289132177 hasConceptScore W4289132177C119599485 @default.
- W4289132177 hasConceptScore W4289132177C119857082 @default.
- W4289132177 hasConceptScore W4289132177C121332964 @default.
- W4289132177 hasConceptScore W4289132177C127413603 @default.
- W4289132177 hasConceptScore W4289132177C134306372 @default.
- W4289132177 hasConceptScore W4289132177C139945424 @default.
- W4289132177 hasConceptScore W4289132177C148483581 @default.
- W4289132177 hasConceptScore W4289132177C150217764 @default.
- W4289132177 hasConceptScore W4289132177C154945302 @default.
- W4289132177 hasConceptScore W4289132177C163258240 @default.
- W4289132177 hasConceptScore W4289132177C193809577 @default.
- W4289132177 hasConceptScore W4289132177C33923547 @default.
- W4289132177 hasConceptScore W4289132177C41008148 @default.
- W4289132177 hasConceptScore W4289132177C42475967 @default.
- W4289132177 hasConceptScore W4289132177C50644808 @default.
- W4289132177 hasConceptScore W4289132177C62520636 @default.
- W4289132177 hasConceptScore W4289132177C81388566 @default.
- W4289132177 hasConceptScore W4289132177C89227174 @default.
- W4289132177 hasConceptScore W4289132177C92047909 @default.
- W4289132177 hasLocation W42891321771 @default.
- W4289132177 hasLocation W42891321772 @default.
- W4289132177 hasOpenAccess W4289132177 @default.
- W4289132177 hasPrimaryLocation W42891321771 @default.
- W4289132177 hasRelatedWork W1946342668 @default.
- W4289132177 hasRelatedWork W2016147052 @default.
- W4289132177 hasRelatedWork W2142343760 @default.
- W4289132177 hasRelatedWork W2188359087 @default.
- W4289132177 hasRelatedWork W2279639021 @default.
- W4289132177 hasRelatedWork W3133901029 @default.
- W4289132177 hasRelatedWork W3195815141 @default.
- W4289132177 hasRelatedWork W3216434047 @default.
- W4289132177 hasRelatedWork W4211198594 @default.
- W4289132177 hasRelatedWork W4295036712 @default.
- W4289132177 hasVolume "2022" @default.
- W4289132177 isParatext "false" @default.