Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289133612> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4289133612 endingPage "11" @default.
- W4289133612 startingPage "1" @default.
- W4289133612 abstract "With the continuous speed increase of high-speed trains, higher performance requirements are put forward for the braking technology and braking device. In order to improve productivity and overall competitiveness, manufacturing companies are actively researching new manufacturing technologies and production methods, and shop floor scheduling is one of the core components of this problem. This paper mainly studies the high-speed train composite workshop planning and scheduling optimization method. This experiment adopts B/S-based architecture mode. The prototype system is developed with Microsoft’s integrated development platform Visual Studio 2013, and Microsoft’s SQL Server 2008 is used as the background database management system. The experiment mainly uses the white box test method; the test content mainly includes module interface test, module local data structure test, and module boundary test. The interface parameters of each module are checked, and the boundary values of some functions are also analyzed and tested. According to the results, the planning management personnel revise the priority order again until all the molds meet the requirements of delivery and constraints. If the scheduled results do not meet the requirements, the methods such as those compressing the lead time, those urging the casting to be in place in advance, single process outsourcing, and overtime shall be considered. In this paper, a layered coding strategy is adopted. The first layer of coding represents the batch processing sequence. The second layer of coding determines to which process the corresponding batch belongs to. Each layer of coding is divided into different machine segments to represent the batch processing sequence on different machines. When the production process needs to switch orders, it can know which equipment parameters need to be adjusted in advance, which can effectively avoid the wrong operation caused by temporary adjustment of production parameters, reduce the order switching time, and improve the utilization rate of the production line. The data show that, compared with the artificial experience method and the priority rule method, the order production cycle after genetic optimization is reduced by 7.34% and 8.98%, respectively. The results show that the workshop scheduling optimization can help enterprises save stamping scheduling time, reduce production costs, and improve the rationality of scheduling." @default.
- W4289133612 created "2022-08-01" @default.
- W4289133612 creator A5024749811 @default.
- W4289133612 creator A5033473294 @default.
- W4289133612 creator A5064981744 @default.
- W4289133612 creator A5087335378 @default.
- W4289133612 date "2022-07-31" @default.
- W4289133612 modified "2023-09-26" @default.
- W4289133612 title "Optimization Method of High-Speed Train Composite Material Workshop Planning and Scheduling" @default.
- W4289133612 cites W2063189938 @default.
- W4289133612 cites W2067137355 @default.
- W4289133612 cites W2141010888 @default.
- W4289133612 cites W2156868808 @default.
- W4289133612 cites W2192733667 @default.
- W4289133612 cites W2221887803 @default.
- W4289133612 cites W2224055910 @default.
- W4289133612 cites W2235629217 @default.
- W4289133612 cites W2274474127 @default.
- W4289133612 cites W2301363067 @default.
- W4289133612 cites W2339650397 @default.
- W4289133612 cites W2396485317 @default.
- W4289133612 cites W2466827166 @default.
- W4289133612 cites W2467824970 @default.
- W4289133612 cites W2473521700 @default.
- W4289133612 cites W2522656808 @default.
- W4289133612 cites W2547562771 @default.
- W4289133612 cites W2552796737 @default.
- W4289133612 cites W2560019297 @default.
- W4289133612 cites W2605839271 @default.
- W4289133612 cites W2606885311 @default.
- W4289133612 cites W2611257604 @default.
- W4289133612 cites W2753419526 @default.
- W4289133612 cites W2808458106 @default.
- W4289133612 cites W2984216577 @default.
- W4289133612 doi "https://doi.org/10.1155/2022/7868974" @default.
- W4289133612 hasPublicationYear "2022" @default.
- W4289133612 type Work @default.
- W4289133612 citedByCount "1" @default.
- W4289133612 countsByYear W42891336122023 @default.
- W4289133612 crossrefType "journal-article" @default.
- W4289133612 hasAuthorship W4289133612A5024749811 @default.
- W4289133612 hasAuthorship W4289133612A5033473294 @default.
- W4289133612 hasAuthorship W4289133612A5064981744 @default.
- W4289133612 hasAuthorship W4289133612A5087335378 @default.
- W4289133612 hasBestOaLocation W42891336121 @default.
- W4289133612 hasConcept C105795698 @default.
- W4289133612 hasConcept C117671659 @default.
- W4289133612 hasConcept C127413603 @default.
- W4289133612 hasConcept C149635348 @default.
- W4289133612 hasConcept C179518139 @default.
- W4289133612 hasConcept C206729178 @default.
- W4289133612 hasConcept C21547014 @default.
- W4289133612 hasConcept C33923547 @default.
- W4289133612 hasConcept C41008148 @default.
- W4289133612 hasConceptScore W4289133612C105795698 @default.
- W4289133612 hasConceptScore W4289133612C117671659 @default.
- W4289133612 hasConceptScore W4289133612C127413603 @default.
- W4289133612 hasConceptScore W4289133612C149635348 @default.
- W4289133612 hasConceptScore W4289133612C179518139 @default.
- W4289133612 hasConceptScore W4289133612C206729178 @default.
- W4289133612 hasConceptScore W4289133612C21547014 @default.
- W4289133612 hasConceptScore W4289133612C33923547 @default.
- W4289133612 hasConceptScore W4289133612C41008148 @default.
- W4289133612 hasLocation W42891336121 @default.
- W4289133612 hasLocation W42891336122 @default.
- W4289133612 hasOpenAccess W4289133612 @default.
- W4289133612 hasPrimaryLocation W42891336121 @default.
- W4289133612 hasRelatedWork W1505185318 @default.
- W4289133612 hasRelatedWork W1882733036 @default.
- W4289133612 hasRelatedWork W1969740176 @default.
- W4289133612 hasRelatedWork W1992741870 @default.
- W4289133612 hasRelatedWork W2346058735 @default.
- W4289133612 hasRelatedWork W2383319832 @default.
- W4289133612 hasRelatedWork W2546696010 @default.
- W4289133612 hasRelatedWork W2606323037 @default.
- W4289133612 hasRelatedWork W2997221951 @default.
- W4289133612 hasRelatedWork W3174582865 @default.
- W4289133612 hasVolume "2022" @default.
- W4289133612 isParatext "false" @default.
- W4289133612 isRetracted "false" @default.
- W4289133612 workType "article" @default.