Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289133690> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4289133690 endingPage "9" @default.
- W4289133690 startingPage "1" @default.
- W4289133690 abstract "Ultrasound-guided needle biopsy based on artificial neural network, as a safe, effective, and simple preoperative pathological diagnosis technique, has been widely used in clinical practice. Ultrasound-guided needle biopsy based on artificial neural networks for suspicious breast lesions found in conventional ultrasound examinations is an effective method for preoperative diagnosis. The purpose of this article is to study the value of artificial neural network ultrasound in improving breast cancer diagnosis. This article summarizes the neuron model of PCNN by observing and studying its impulse synchronization phenomenon. Aiming at gray-scale images disturbed by mixed noise (impulse noise and the Gaussian noise), a comprehensive filtering algorithm based on the simplified PCNN model is proposed. In this paper, the benign and malignant breast masses were evaluated based on the two-dimensional and three-dimensional ultrasound imaging signs of the mass, and compared with the postoperative pathological results, a logistic regression model was established to analyze the shape, boundary, microcalcification, and posterior echo attenuation of the mass, values for keratinization or burrs, convergent signs, and blood flow classification in the differential diagnosis of benign and malignant. In this paper, a color ultrasound diagnostic device is used, Sonobi is used as a contrast medium, and the injection volume is 2.4 ml/dose. During the imaging process, the sound image performance of the lesion is dynamically observed, the original dynamic data are stored throughout the whole process, and the playback analysis is performed after the imaging is completed. Studies have shown that CDUS elastography (UE) combined with MRI can increase the sensitivity of breast cancer diagnosis, with a diagnostic accuracy rate of 92.4%." @default.
- W4289133690 created "2022-08-01" @default.
- W4289133690 creator A5004730592 @default.
- W4289133690 creator A5012353809 @default.
- W4289133690 creator A5025221904 @default.
- W4289133690 creator A5062290185 @default.
- W4289133690 date "2022-07-31" @default.
- W4289133690 modified "2023-09-26" @default.
- W4289133690 title "Value of Artificial Neural Network Ultrasound in Improving Breast Cancer Diagnosis" @default.
- W4289133690 cites W1522876774 @default.
- W4289133690 cites W2007082372 @default.
- W4289133690 cites W2018566847 @default.
- W4289133690 cites W2032389573 @default.
- W4289133690 cites W2116353952 @default.
- W4289133690 cites W2117403911 @default.
- W4289133690 cites W2265258779 @default.
- W4289133690 cites W2266102409 @default.
- W4289133690 cites W2271131504 @default.
- W4289133690 cites W2302649842 @default.
- W4289133690 cites W2472971850 @default.
- W4289133690 cites W2497369791 @default.
- W4289133690 cites W2807148047 @default.
- W4289133690 cites W2914351337 @default.
- W4289133690 cites W3000184299 @default.
- W4289133690 cites W3003199121 @default.
- W4289133690 doi "https://doi.org/10.1155/2022/1779337" @default.
- W4289133690 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35958763" @default.
- W4289133690 hasPublicationYear "2022" @default.
- W4289133690 type Work @default.
- W4289133690 citedByCount "1" @default.
- W4289133690 countsByYear W42891336902023 @default.
- W4289133690 crossrefType "journal-article" @default.
- W4289133690 hasAuthorship W4289133690A5004730592 @default.
- W4289133690 hasAuthorship W4289133690A5012353809 @default.
- W4289133690 hasAuthorship W4289133690A5025221904 @default.
- W4289133690 hasAuthorship W4289133690A5062290185 @default.
- W4289133690 hasBestOaLocation W42891336901 @default.
- W4289133690 hasConcept C121608353 @default.
- W4289133690 hasConcept C126322002 @default.
- W4289133690 hasConcept C126838900 @default.
- W4289133690 hasConcept C143753070 @default.
- W4289133690 hasConcept C154945302 @default.
- W4289133690 hasConcept C2780472235 @default.
- W4289133690 hasConcept C2781129008 @default.
- W4289133690 hasConcept C41008148 @default.
- W4289133690 hasConcept C50644808 @default.
- W4289133690 hasConcept C530470458 @default.
- W4289133690 hasConcept C71924100 @default.
- W4289133690 hasConceptScore W4289133690C121608353 @default.
- W4289133690 hasConceptScore W4289133690C126322002 @default.
- W4289133690 hasConceptScore W4289133690C126838900 @default.
- W4289133690 hasConceptScore W4289133690C143753070 @default.
- W4289133690 hasConceptScore W4289133690C154945302 @default.
- W4289133690 hasConceptScore W4289133690C2780472235 @default.
- W4289133690 hasConceptScore W4289133690C2781129008 @default.
- W4289133690 hasConceptScore W4289133690C41008148 @default.
- W4289133690 hasConceptScore W4289133690C50644808 @default.
- W4289133690 hasConceptScore W4289133690C530470458 @default.
- W4289133690 hasConceptScore W4289133690C71924100 @default.
- W4289133690 hasFunder F4320311213 @default.
- W4289133690 hasLocation W42891336901 @default.
- W4289133690 hasLocation W42891336902 @default.
- W4289133690 hasLocation W42891336903 @default.
- W4289133690 hasOpenAccess W4289133690 @default.
- W4289133690 hasPrimaryLocation W42891336901 @default.
- W4289133690 hasRelatedWork W2348503507 @default.
- W4289133690 hasRelatedWork W2355912880 @default.
- W4289133690 hasRelatedWork W2386387936 @default.
- W4289133690 hasRelatedWork W2390238267 @default.
- W4289133690 hasRelatedWork W2748952813 @default.
- W4289133690 hasRelatedWork W2780582353 @default.
- W4289133690 hasRelatedWork W2899084033 @default.
- W4289133690 hasRelatedWork W3115513349 @default.
- W4289133690 hasRelatedWork W3217362473 @default.
- W4289133690 hasRelatedWork W4386015189 @default.
- W4289133690 hasVolume "2022" @default.
- W4289133690 isParatext "false" @default.
- W4289133690 isRetracted "false" @default.
- W4289133690 workType "article" @default.