Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289173519> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4289173519 abstract "Abstract Evaluating the autocorrelation range of species distribution in space is necessary for many applied ecological questions like implementing protected area networks or monitoring programs. The autocorrelation range can be inferred from observations, based on a spatial sampling design. However, there is a trade-off between estimating the autocorrelation range of a species distribution and estimating fixed effects affecting the mean species abundance or occupancy among sites. The random sampling design is considered as a good heuristic to estimate autocorrelation range, for it contains contrasted pairwise distances that cover a wide array of possible range values. The grid design is viewed as a better choice for estimating fixed effects, for it eliminates small pairwise distances that are more prone to pseudo-replication. Mixing random and grid (‘hybrid’ designs) has been presented as a way to navigate between both conflicting objectives. We postulated that fractal designs — which have a self-similarity property and well-identified scales — could make a compromise, for they preserve some regularity reminiscent of grid at each scale, but also browse a wide array of possible autocorrelation range values across scales. We used maximum likelihood estimation within an optimal design of experiments approach to compare the accuracy of hybrid and fractal designs at estimating the fixed intercept and the autocorrelation range of a spatial field of values. We found that hybrid designs were Pareto-optimal intermediary strategies between grid and random for small autocorrelation range values only, while classic grid design should always be preferred when autocorrelation is large. Fractal designs yielded Pareto-optimal strategies specifically good at estimating small autocorrelation ranges. However, they were generally not Pareto-optimal for higher values of autocorrelation range. At last, when the surveyed area could be changed, random designs were sufficient to reach the Pareto front in any context. Fractal designs seemed relevant when specifically aiming at improving the estimation of small autocorrelation ranges in a fixed surveyed area with a limited sampling budget, which is a quite circumscribed scenario. However, they may prove more clearly advantageous to analyse biodiversity patterns when covariates are included in the analysis and ecological processes differ among spatial scales." @default.
- W4289173519 created "2022-08-01" @default.
- W4289173519 creator A5010804901 @default.
- W4289173519 date "2022-07-31" @default.
- W4289173519 modified "2023-10-16" @default.
- W4289173519 title "Efficient sampling designs to assess biodiversity spatial autocorrelation : should we go fractal ?" @default.
- W4289173519 cites W1537799501 @default.
- W4289173519 cites W1597703900 @default.
- W4289173519 cites W1834040219 @default.
- W4289173519 cites W1952349644 @default.
- W4289173519 cites W1967530340 @default.
- W4289173519 cites W1973973368 @default.
- W4289173519 cites W1975278211 @default.
- W4289173519 cites W1984914156 @default.
- W4289173519 cites W2004364719 @default.
- W4289173519 cites W2007896740 @default.
- W4289173519 cites W2022437936 @default.
- W4289173519 cites W2032487465 @default.
- W4289173519 cites W2036114107 @default.
- W4289173519 cites W2043241041 @default.
- W4289173519 cites W2052611179 @default.
- W4289173519 cites W2078070257 @default.
- W4289173519 cites W2089792340 @default.
- W4289173519 cites W2098012392 @default.
- W4289173519 cites W2114123964 @default.
- W4289173519 cites W2123887297 @default.
- W4289173519 cites W2128493075 @default.
- W4289173519 cites W2134924002 @default.
- W4289173519 cites W2134978806 @default.
- W4289173519 cites W2147798740 @default.
- W4289173519 cites W2162873750 @default.
- W4289173519 cites W2170565777 @default.
- W4289173519 cites W2496675188 @default.
- W4289173519 cites W2758602907 @default.
- W4289173519 cites W3198986890 @default.
- W4289173519 cites W3205175207 @default.
- W4289173519 cites W4238652859 @default.
- W4289173519 cites W4245258775 @default.
- W4289173519 doi "https://doi.org/10.1101/2022.07.29.501974" @default.
- W4289173519 hasPublicationYear "2022" @default.
- W4289173519 type Work @default.
- W4289173519 citedByCount "0" @default.
- W4289173519 crossrefType "posted-content" @default.
- W4289173519 hasAuthorship W4289173519A5010804901 @default.
- W4289173519 hasBestOaLocation W42891735191 @default.
- W4289173519 hasConcept C105795698 @default.
- W4289173519 hasConcept C106131492 @default.
- W4289173519 hasConcept C11413529 @default.
- W4289173519 hasConcept C127413603 @default.
- W4289173519 hasConcept C134306372 @default.
- W4289173519 hasConcept C137635306 @default.
- W4289173519 hasConcept C140779682 @default.
- W4289173519 hasConcept C146978453 @default.
- W4289173519 hasConcept C159620131 @default.
- W4289173519 hasConcept C183223151 @default.
- W4289173519 hasConcept C187691185 @default.
- W4289173519 hasConcept C204323151 @default.
- W4289173519 hasConcept C2524010 @default.
- W4289173519 hasConcept C31972630 @default.
- W4289173519 hasConcept C33923547 @default.
- W4289173519 hasConcept C40636538 @default.
- W4289173519 hasConcept C41008148 @default.
- W4289173519 hasConcept C5297727 @default.
- W4289173519 hasConceptScore W4289173519C105795698 @default.
- W4289173519 hasConceptScore W4289173519C106131492 @default.
- W4289173519 hasConceptScore W4289173519C11413529 @default.
- W4289173519 hasConceptScore W4289173519C127413603 @default.
- W4289173519 hasConceptScore W4289173519C134306372 @default.
- W4289173519 hasConceptScore W4289173519C137635306 @default.
- W4289173519 hasConceptScore W4289173519C140779682 @default.
- W4289173519 hasConceptScore W4289173519C146978453 @default.
- W4289173519 hasConceptScore W4289173519C159620131 @default.
- W4289173519 hasConceptScore W4289173519C183223151 @default.
- W4289173519 hasConceptScore W4289173519C187691185 @default.
- W4289173519 hasConceptScore W4289173519C204323151 @default.
- W4289173519 hasConceptScore W4289173519C2524010 @default.
- W4289173519 hasConceptScore W4289173519C31972630 @default.
- W4289173519 hasConceptScore W4289173519C33923547 @default.
- W4289173519 hasConceptScore W4289173519C40636538 @default.
- W4289173519 hasConceptScore W4289173519C41008148 @default.
- W4289173519 hasConceptScore W4289173519C5297727 @default.
- W4289173519 hasLocation W42891735191 @default.
- W4289173519 hasLocation W42891735192 @default.
- W4289173519 hasLocation W42891735193 @default.
- W4289173519 hasOpenAccess W4289173519 @default.
- W4289173519 hasPrimaryLocation W42891735191 @default.
- W4289173519 hasRelatedWork W1986851479 @default.
- W4289173519 hasRelatedWork W2010385015 @default.
- W4289173519 hasRelatedWork W2029664475 @default.
- W4289173519 hasRelatedWork W2031158631 @default.
- W4289173519 hasRelatedWork W2347703430 @default.
- W4289173519 hasRelatedWork W2583480660 @default.
- W4289173519 hasRelatedWork W2622264947 @default.
- W4289173519 hasRelatedWork W2769759987 @default.
- W4289173519 hasRelatedWork W3001219871 @default.
- W4289173519 hasRelatedWork W3181941499 @default.
- W4289173519 isParatext "false" @default.
- W4289173519 isRetracted "false" @default.
- W4289173519 workType "article" @default.