Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289201306> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4289201306 endingPage "104479" @default.
- W4289201306 startingPage "104479" @default.
- W4289201306 abstract "• Developed machine learning models for predicting hydrogen adsorption capacity at cryogenic temperature and high pressure from room temperature and low pressure. • Utilized the machine learning models to enhance the database to 8000+. • Comprehensively evaluated the factors influencing hydrogen adsorption capacity at 77 K and different pressures. • The accuracy of the experimental and machine learning models was compared. • GCMC and machine learning have improved efficiency in high-throughput screening of hydrogen storage materials. Metal-organic frameworks (MOFs) have been recently studied as promising hydrogen storage adsorbents. However, large-scale screening by experiments is infeasible. Machine learning and Grand Canonical Monte Carlo (GCMC) have been widely applied in the screening of MOFs to greatly improve efficiency. GCMC was applied to 418 MOFs to calculate structural and performance parameters, and the gradient boosted regression (GBR) machine learning algorithm was used to predict the hydrogen adsorption capacity at cryogenic temperatures and high pressures from room temperatures and low pressures, and the database was extended to 8024 MOFs adsorbents based on the established ML model. The influencing factors affecting hydrogen adsorption capacity were comprehensively evaluated, and four representative MOFs were randomly selected for hydrogen adsorption isotherm testing, and the accuracy of ML was verified by comparing the GCMC simulation results with those predicted by ML. The accuracy of the ML model is acceptable, with the coefficient of determination (R 2 ) of the train all exceeding 0.9 and the test R 2 all exceeding 0.85. The MOFs exhibiting high hydrogen adsorption capacity by low-pressure adsorption have low pore size, Henry's constants, and density, and the metal-based is Al-based and Zn-based, while the surface area dominates at high-pressure adsorption. The experimentally tested MOFs with hydrogen adsorption capacity compared with GCMC simulation and ML models have an error of 1.01% in the low-pressure region and 1.49% in the high-pressure region." @default.
- W4289201306 created "2022-08-01" @default.
- W4289201306 creator A5016148438 @default.
- W4289201306 creator A5043732387 @default.
- W4289201306 creator A5062523490 @default.
- W4289201306 date "2022-09-01" @default.
- W4289201306 modified "2023-10-06" @default.
- W4289201306 title "Machine-learning-based prediction of hydrogen adsorption capacity at varied temperatures and pressures for MOFs adsorbents" @default.
- W4289201306 cites W1975501285 @default.
- W4289201306 cites W1981140401 @default.
- W4289201306 cites W1990633449 @default.
- W4289201306 cites W2002542825 @default.
- W4289201306 cites W2005154776 @default.
- W4289201306 cites W2053294416 @default.
- W4289201306 cites W2084266203 @default.
- W4289201306 cites W2085810247 @default.
- W4289201306 cites W2100716186 @default.
- W4289201306 cites W2106259156 @default.
- W4289201306 cites W2138085558 @default.
- W4289201306 cites W2152844979 @default.
- W4289201306 cites W2162894172 @default.
- W4289201306 cites W2286939989 @default.
- W4289201306 cites W2553822864 @default.
- W4289201306 cites W2593134243 @default.
- W4289201306 cites W2604850519 @default.
- W4289201306 cites W2800177840 @default.
- W4289201306 cites W2899354085 @default.
- W4289201306 cites W2902089868 @default.
- W4289201306 cites W2949707859 @default.
- W4289201306 cites W2983028326 @default.
- W4289201306 cites W3116337110 @default.
- W4289201306 cites W3126154006 @default.
- W4289201306 cites W3129369031 @default.
- W4289201306 cites W3153567671 @default.
- W4289201306 cites W3156686575 @default.
- W4289201306 cites W3157364410 @default.
- W4289201306 cites W3159390091 @default.
- W4289201306 cites W3174074007 @default.
- W4289201306 cites W3176258239 @default.
- W4289201306 cites W3195422782 @default.
- W4289201306 cites W3216996917 @default.
- W4289201306 cites W4210526258 @default.
- W4289201306 cites W4223645837 @default.
- W4289201306 cites W4238942665 @default.
- W4289201306 cites W4249966797 @default.
- W4289201306 doi "https://doi.org/10.1016/j.jtice.2022.104479" @default.
- W4289201306 hasPublicationYear "2022" @default.
- W4289201306 type Work @default.
- W4289201306 citedByCount "10" @default.
- W4289201306 countsByYear W42892013062022 @default.
- W4289201306 countsByYear W42892013062023 @default.
- W4289201306 crossrefType "journal-article" @default.
- W4289201306 hasAuthorship W4289201306A5016148438 @default.
- W4289201306 hasAuthorship W4289201306A5043732387 @default.
- W4289201306 hasAuthorship W4289201306A5062523490 @default.
- W4289201306 hasConcept C127413603 @default.
- W4289201306 hasConcept C147789679 @default.
- W4289201306 hasConcept C150394285 @default.
- W4289201306 hasConcept C178790620 @default.
- W4289201306 hasConcept C185592680 @default.
- W4289201306 hasConcept C192562407 @default.
- W4289201306 hasConcept C39432304 @default.
- W4289201306 hasConcept C42360764 @default.
- W4289201306 hasConcept C512968161 @default.
- W4289201306 hasConceptScore W4289201306C127413603 @default.
- W4289201306 hasConceptScore W4289201306C147789679 @default.
- W4289201306 hasConceptScore W4289201306C150394285 @default.
- W4289201306 hasConceptScore W4289201306C178790620 @default.
- W4289201306 hasConceptScore W4289201306C185592680 @default.
- W4289201306 hasConceptScore W4289201306C192562407 @default.
- W4289201306 hasConceptScore W4289201306C39432304 @default.
- W4289201306 hasConceptScore W4289201306C42360764 @default.
- W4289201306 hasConceptScore W4289201306C512968161 @default.
- W4289201306 hasFunder F4320311847 @default.
- W4289201306 hasFunder F4320321001 @default.
- W4289201306 hasFunder F4320321878 @default.
- W4289201306 hasLocation W42892013061 @default.
- W4289201306 hasOpenAccess W4289201306 @default.
- W4289201306 hasPrimaryLocation W42892013061 @default.
- W4289201306 hasRelatedWork W1974626338 @default.
- W4289201306 hasRelatedWork W2003672748 @default.
- W4289201306 hasRelatedWork W2007774932 @default.
- W4289201306 hasRelatedWork W2012123460 @default.
- W4289201306 hasRelatedWork W2083461823 @default.
- W4289201306 hasRelatedWork W2394054047 @default.
- W4289201306 hasRelatedWork W2748952813 @default.
- W4289201306 hasRelatedWork W2899084033 @default.
- W4289201306 hasRelatedWork W4224436599 @default.
- W4289201306 hasRelatedWork W4232808828 @default.
- W4289201306 hasVolume "138" @default.
- W4289201306 isParatext "false" @default.
- W4289201306 isRetracted "false" @default.
- W4289201306 workType "article" @default.