Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289201638> ?p ?o ?g. }
- W4289201638 abstract "Abstract Background Kidney disease progression rates vary among patients. Rapid and accurate prediction of kidney disease outcomes is crucial for disease management. In recent years, various prediction models using Machine Learning (ML) algorithms have been established in nephrology. However, their accuracy have been inconsistent. Therefore, we conducted a systematic review and meta-analysis to investigate the diagnostic accuracy of ML algorithms for kidney disease progression. Methods We searched PubMed, EMBASE, Cochrane Central Register of Controlled Trials, the Chinese Biomedicine Literature Database, Chinese National Knowledge Infrastructure, Wanfang Database, and the VIP Database for diagnostic studies on ML algorithms’ accuracy in predicting kidney disease prognosis, from the establishment of these databases until October 2020. Two investigators independently evaluate study quality by QUADAS-2 tool and extracted data from single ML algorithm for data synthesis using the bivariate model and the hierarchical summary receiver operating characteristic (HSROC) model. Results Fifteen studies were left after screening, only 6 studies were eligible for data synthesis. The sample size of these 6 studies was 12,534, and the kidney disease types could be divided into chronic kidney disease (CKD) and Immunoglobulin A Nephropathy, with 5 articles using end-stage renal diseases occurrence as the primary outcome. The main results indicated that the area under curve (AUC) of the HSROC was 0.87 (0.84–0.90) and ML algorithm exhibited a strong specificity, 95% confidence interval and heterogeneity (I 2 ) of (0.87, 0.84–0.90, [I 2 99.0%]) and a weak sensitivity of (0.68, 0.58–0.77, [I 2 99.7%]) in predicting kidney disease deterioration. And the the results of subgroup analysis indicated that ML algorithm’s AUC for predicting CKD prognosis was 0.82 (0.79–0.85), with the pool sensitivity of (0.64, 0.49–0.77, [I 2 99.20%]) and pool specificity of (0.84, 0.74–0.91, [I 2 99.84%]). The ML algorithm’s AUC for predicting IgA nephropathy prognosis was 0.78 (0.74–0.81), with the pool sensitivity of (0.74, 0.71–0.77, [I 2 7.10%]) and pool specificity of (0.93, 0.91–0.95, [I 2 83.92%]). Conclusion Taking advantage of big data, ML algorithm-based prediction models have high accuracy in predicting kidney disease progression, we recommend ML algorithms as an auxiliary tool for clinicians to determine proper treatment and disease management strategies." @default.
- W4289201638 created "2022-08-01" @default.
- W4289201638 creator A5007187055 @default.
- W4289201638 creator A5009032084 @default.
- W4289201638 creator A5011186413 @default.
- W4289201638 creator A5014724841 @default.
- W4289201638 creator A5015918478 @default.
- W4289201638 creator A5017622789 @default.
- W4289201638 creator A5038832572 @default.
- W4289201638 creator A5051422544 @default.
- W4289201638 creator A5053204257 @default.
- W4289201638 creator A5054115875 @default.
- W4289201638 creator A5055243962 @default.
- W4289201638 creator A5059357612 @default.
- W4289201638 creator A5084893043 @default.
- W4289201638 creator A5086663641 @default.
- W4289201638 date "2022-08-01" @default.
- W4289201638 modified "2023-10-10" @default.
- W4289201638 title "Machine learning algorithms’ accuracy in predicting kidney disease progression: a systematic review and meta-analysis" @default.
- W4289201638 cites W1901616594 @default.
- W4289201638 cites W1953676832 @default.
- W4289201638 cites W1981055539 @default.
- W4289201638 cites W1999577714 @default.
- W4289201638 cites W2004910511 @default.
- W4289201638 cites W2010710496 @default.
- W4289201638 cites W2138252880 @default.
- W4289201638 cites W2142700084 @default.
- W4289201638 cites W2164249826 @default.
- W4289201638 cites W2169792285 @default.
- W4289201638 cites W2300749022 @default.
- W4289201638 cites W2467227824 @default.
- W4289201638 cites W2606105183 @default.
- W4289201638 cites W2789894922 @default.
- W4289201638 cites W2888565440 @default.
- W4289201638 cites W2897733270 @default.
- W4289201638 cites W2903023054 @default.
- W4289201638 cites W2905005518 @default.
- W4289201638 cites W2913997948 @default.
- W4289201638 cites W2918092070 @default.
- W4289201638 cites W2918283874 @default.
- W4289201638 cites W2920239764 @default.
- W4289201638 cites W2940010972 @default.
- W4289201638 cites W2940596626 @default.
- W4289201638 cites W2941163443 @default.
- W4289201638 cites W2945048168 @default.
- W4289201638 cites W3005627128 @default.
- W4289201638 cites W3016873517 @default.
- W4289201638 cites W3033515365 @default.
- W4289201638 cites W3036842366 @default.
- W4289201638 cites W3046236278 @default.
- W4289201638 cites W3074864365 @default.
- W4289201638 cites W3081103314 @default.
- W4289201638 cites W3081607022 @default.
- W4289201638 cites W4240776234 @default.
- W4289201638 doi "https://doi.org/10.1186/s12911-022-01951-1" @default.
- W4289201638 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35915457" @default.
- W4289201638 hasPublicationYear "2022" @default.
- W4289201638 type Work @default.
- W4289201638 citedByCount "3" @default.
- W4289201638 countsByYear W42892016382023 @default.
- W4289201638 crossrefType "journal-article" @default.
- W4289201638 hasAuthorship W4289201638A5007187055 @default.
- W4289201638 hasAuthorship W4289201638A5009032084 @default.
- W4289201638 hasAuthorship W4289201638A5011186413 @default.
- W4289201638 hasAuthorship W4289201638A5014724841 @default.
- W4289201638 hasAuthorship W4289201638A5015918478 @default.
- W4289201638 hasAuthorship W4289201638A5017622789 @default.
- W4289201638 hasAuthorship W4289201638A5038832572 @default.
- W4289201638 hasAuthorship W4289201638A5051422544 @default.
- W4289201638 hasAuthorship W4289201638A5053204257 @default.
- W4289201638 hasAuthorship W4289201638A5054115875 @default.
- W4289201638 hasAuthorship W4289201638A5055243962 @default.
- W4289201638 hasAuthorship W4289201638A5059357612 @default.
- W4289201638 hasAuthorship W4289201638A5084893043 @default.
- W4289201638 hasAuthorship W4289201638A5086663641 @default.
- W4289201638 hasBestOaLocation W42892016381 @default.
- W4289201638 hasConcept C11413529 @default.
- W4289201638 hasConcept C119857082 @default.
- W4289201638 hasConcept C124101348 @default.
- W4289201638 hasConcept C126322002 @default.
- W4289201638 hasConcept C154945302 @default.
- W4289201638 hasConcept C17744445 @default.
- W4289201638 hasConcept C189708586 @default.
- W4289201638 hasConcept C199539241 @default.
- W4289201638 hasConcept C2778653478 @default.
- W4289201638 hasConcept C2779134260 @default.
- W4289201638 hasConcept C2779473830 @default.
- W4289201638 hasConcept C41008148 @default.
- W4289201638 hasConcept C44249647 @default.
- W4289201638 hasConcept C54847362 @default.
- W4289201638 hasConcept C58471807 @default.
- W4289201638 hasConcept C71924100 @default.
- W4289201638 hasConcept C95190672 @default.
- W4289201638 hasConceptScore W4289201638C11413529 @default.
- W4289201638 hasConceptScore W4289201638C119857082 @default.
- W4289201638 hasConceptScore W4289201638C124101348 @default.
- W4289201638 hasConceptScore W4289201638C126322002 @default.
- W4289201638 hasConceptScore W4289201638C154945302 @default.
- W4289201638 hasConceptScore W4289201638C17744445 @default.
- W4289201638 hasConceptScore W4289201638C189708586 @default.