Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289201746> ?p ?o ?g. }
- W4289201746 endingPage "5124" @default.
- W4289201746 startingPage "5106" @default.
- W4289201746 abstract "This paper proposes a new method that uses Alexnet with ImageNet transfer learning as the feature extractor and optimized and regularized extreme learning as the classifier. We keep the first five convolutional layers and the first two fully connected layers of Alexnet, and then train the network. Then, the mutual information between each dimension of the feature and its category is calculated and sorted, and the feature with the highest ranking is selected for feature dimensionality reduction. The regularization penalty term is introduced to the extreme learning machine to control its algorithm complexity and solve the problem of overfitting. Finally, the Runge Kutta optimization algorithm is employed to ameliorate the hidden layer bias and input weight of the regularized extreme learning machine, and the optimized regularized extreme learning machine is used to classify the dimensionality-reduced clothing image traits. The test outcome illustrates that on some apparel classification with style (ACWS) datasets, the precision, recall, F1-score, and accuracy of the proposed algorithm are 93.06%, 93.17%, 92.82%, and 93.14%, respectively, which are better than those of other clothing image classification algorithms. The results verify that the raised algorithm significantly ameliorates the classification property of clothing image algorithms." @default.
- W4289201746 created "2022-08-01" @default.
- W4289201746 creator A5016933525 @default.
- W4289201746 creator A5042721905 @default.
- W4289201746 creator A5061589068 @default.
- W4289201746 creator A5073720573 @default.
- W4289201746 creator A5083108381 @default.
- W4289201746 date "2022-08-01" @default.
- W4289201746 modified "2023-10-17" @default.
- W4289201746 title "Clothing image classification algorithm based on convolutional neural network and optimized regularized extreme learning machine" @default.
- W4289201746 cites W123584468 @default.
- W4289201746 cites W2083799892 @default.
- W4289201746 cites W2147752924 @default.
- W4289201746 cites W2232317135 @default.
- W4289201746 cites W2243348654 @default.
- W4289201746 cites W2329593462 @default.
- W4289201746 cites W2341953933 @default.
- W4289201746 cites W2567289819 @default.
- W4289201746 cites W2585392941 @default.
- W4289201746 cites W2604882796 @default.
- W4289201746 cites W2618530766 @default.
- W4289201746 cites W2734934825 @default.
- W4289201746 cites W2886415518 @default.
- W4289201746 cites W2911497689 @default.
- W4289201746 cites W2919115771 @default.
- W4289201746 cites W2988396473 @default.
- W4289201746 cites W3009638163 @default.
- W4289201746 cites W3013696689 @default.
- W4289201746 cites W3014865550 @default.
- W4289201746 cites W3092530991 @default.
- W4289201746 cites W3095480712 @default.
- W4289201746 cites W3097677044 @default.
- W4289201746 cites W3107194210 @default.
- W4289201746 cites W3110390414 @default.
- W4289201746 cites W3135401577 @default.
- W4289201746 cites W3154719286 @default.
- W4289201746 cites W3161446059 @default.
- W4289201746 cites W3205612804 @default.
- W4289201746 cites W3215252183 @default.
- W4289201746 cites W3216574334 @default.
- W4289201746 cites W4200590271 @default.
- W4289201746 cites W4226421934 @default.
- W4289201746 cites W4285371043 @default.
- W4289201746 cites W883434633 @default.
- W4289201746 doi "https://doi.org/10.1177/00405175221115472" @default.
- W4289201746 hasPublicationYear "2022" @default.
- W4289201746 type Work @default.
- W4289201746 citedByCount "5" @default.
- W4289201746 countsByYear W42892017462022 @default.
- W4289201746 countsByYear W42892017462023 @default.
- W4289201746 crossrefType "journal-article" @default.
- W4289201746 hasAuthorship W4289201746A5016933525 @default.
- W4289201746 hasAuthorship W4289201746A5042721905 @default.
- W4289201746 hasAuthorship W4289201746A5061589068 @default.
- W4289201746 hasAuthorship W4289201746A5073720573 @default.
- W4289201746 hasAuthorship W4289201746A5083108381 @default.
- W4289201746 hasConcept C111030470 @default.
- W4289201746 hasConcept C11413529 @default.
- W4289201746 hasConcept C115961682 @default.
- W4289201746 hasConcept C119857082 @default.
- W4289201746 hasConcept C138885662 @default.
- W4289201746 hasConcept C153180895 @default.
- W4289201746 hasConcept C154945302 @default.
- W4289201746 hasConcept C22019652 @default.
- W4289201746 hasConcept C2776401178 @default.
- W4289201746 hasConcept C2780150128 @default.
- W4289201746 hasConcept C41008148 @default.
- W4289201746 hasConcept C41895202 @default.
- W4289201746 hasConcept C50644808 @default.
- W4289201746 hasConcept C70518039 @default.
- W4289201746 hasConcept C75294576 @default.
- W4289201746 hasConcept C81363708 @default.
- W4289201746 hasConcept C95623464 @default.
- W4289201746 hasConceptScore W4289201746C111030470 @default.
- W4289201746 hasConceptScore W4289201746C11413529 @default.
- W4289201746 hasConceptScore W4289201746C115961682 @default.
- W4289201746 hasConceptScore W4289201746C119857082 @default.
- W4289201746 hasConceptScore W4289201746C138885662 @default.
- W4289201746 hasConceptScore W4289201746C153180895 @default.
- W4289201746 hasConceptScore W4289201746C154945302 @default.
- W4289201746 hasConceptScore W4289201746C22019652 @default.
- W4289201746 hasConceptScore W4289201746C2776401178 @default.
- W4289201746 hasConceptScore W4289201746C2780150128 @default.
- W4289201746 hasConceptScore W4289201746C41008148 @default.
- W4289201746 hasConceptScore W4289201746C41895202 @default.
- W4289201746 hasConceptScore W4289201746C50644808 @default.
- W4289201746 hasConceptScore W4289201746C70518039 @default.
- W4289201746 hasConceptScore W4289201746C75294576 @default.
- W4289201746 hasConceptScore W4289201746C81363708 @default.
- W4289201746 hasConceptScore W4289201746C95623464 @default.
- W4289201746 hasIssue "23-24" @default.
- W4289201746 hasLocation W42892017461 @default.
- W4289201746 hasOpenAccess W4289201746 @default.
- W4289201746 hasPrimaryLocation W42892017461 @default.
- W4289201746 hasRelatedWork W2760085659 @default.
- W4289201746 hasRelatedWork W2781623059 @default.
- W4289201746 hasRelatedWork W2883447302 @default.
- W4289201746 hasRelatedWork W3012393889 @default.