Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289205891> ?p ?o ?g. }
- W4289205891 endingPage "3648" @default.
- W4289205891 startingPage "3648" @default.
- W4289205891 abstract "As the largest and highest alpine ecoregion in the world, the Qinghai–Tibetan Plateau (QTP) is extremely sensitive to climate change and has experienced extraordinary warming during the past several decades; this has greatly affected various ecosystem processes in this region such as vegetation production and phenological change. Therefore, numerous studies have investigated changes in vegetation dynamics on the QTP using the satellite-derived normalized-difference vegetation index (NDVI) time-series data provided by the Moderate-Resolution Imaging Spectroradiometer (MODIS). However, the highest spatial resolution of only 250 m for the MODIS NDVI product cannot meet the requirement of vegetation monitoring in heterogeneous topographic areas. In this study, therefore, we generated an 8-day and 30 m resolution NDVI dataset from 2000 to 2020 for the QTP through the fusion of 30 m Landsat and 250 m MODIS NDVI time-series data. This dataset, referred to as QTP-NDVI30, was reconstructed by employing all available Landsat 5/7/8 images (>100,000 scenes) and using our recently developed gap-filling and Savitzky–Golay filtering (GF-SG) method. We improved the original GF-SG approach by incorporating a module to process snow contamination when applied to the QTP. QTP-NDVI30 was carefully evaluated in both quantitative assessments and visual inspections. Compared with reference Landsat images during the growing season in 100 randomly selected subregions across the QTP, the reconstructed 30 m NDVI images have an average mean absolute error (MAE) of 0.022 and a spatial structure similarity (SSIM) above 0.094. We compared QTP-NDVI30 with upscaled cloud-free PlanetScope images in some topographic areas and observed consistent spatial variations in NDVI between them (averaged SSIM = 0.874). We further examined an application of QTP-NDVI30 to detect vegetation green-up dates (GUDs) and found that QTP-NDVI30-derived GUD data show general agreement in spatial patterns with the 250 m MODIS GUD data, but provide richer spatial details (e.g., GUD variations at the subpixel scale). QTP-NDVI30 provides an opportunity to monitor vegetation and investigate land-surface processes in the QTP region at fine spatiotemporal scales." @default.
- W4289205891 created "2022-08-01" @default.
- W4289205891 creator A5016286750 @default.
- W4289205891 creator A5057937743 @default.
- W4289205891 creator A5062997304 @default.
- W4289205891 creator A5087333350 @default.
- W4289205891 creator A5087982601 @default.
- W4289205891 date "2022-07-29" @default.
- W4289205891 modified "2023-10-03" @default.
- W4289205891 title "Reconstructing High-Spatiotemporal-Resolution (30 m and 8-Days) NDVI Time-Series Data for the Qinghai–Tibetan Plateau from 2000–2020" @default.
- W4289205891 cites W1655403841 @default.
- W4289205891 cites W1963768209 @default.
- W4289205891 cites W1984378216 @default.
- W4289205891 cites W2002908628 @default.
- W4289205891 cites W2018636632 @default.
- W4289205891 cites W2042633021 @default.
- W4289205891 cites W2063623478 @default.
- W4289205891 cites W2072093516 @default.
- W4289205891 cites W2121401610 @default.
- W4289205891 cites W2133665775 @default.
- W4289205891 cites W2146501057 @default.
- W4289205891 cites W2159360647 @default.
- W4289205891 cites W2167968759 @default.
- W4289205891 cites W2170787371 @default.
- W4289205891 cites W2200350976 @default.
- W4289205891 cites W2560900959 @default.
- W4289205891 cites W2767157054 @default.
- W4289205891 cites W2771552585 @default.
- W4289205891 cites W2788340823 @default.
- W4289205891 cites W2793299608 @default.
- W4289205891 cites W2804526550 @default.
- W4289205891 cites W2830085693 @default.
- W4289205891 cites W2888529949 @default.
- W4289205891 cites W2888991991 @default.
- W4289205891 cites W2898564857 @default.
- W4289205891 cites W2938854198 @default.
- W4289205891 cites W2972067909 @default.
- W4289205891 cites W2981301710 @default.
- W4289205891 cites W3007407753 @default.
- W4289205891 cites W3008202438 @default.
- W4289205891 cites W3008666314 @default.
- W4289205891 cites W3038038666 @default.
- W4289205891 cites W3047144932 @default.
- W4289205891 cites W3088545169 @default.
- W4289205891 cites W3125319458 @default.
- W4289205891 cites W3193406951 @default.
- W4289205891 cites W3213939548 @default.
- W4289205891 cites W4200610022 @default.
- W4289205891 cites W4280581904 @default.
- W4289205891 cites W4280605058 @default.
- W4289205891 doi "https://doi.org/10.3390/rs14153648" @default.
- W4289205891 hasPublicationYear "2022" @default.
- W4289205891 type Work @default.
- W4289205891 citedByCount "7" @default.
- W4289205891 countsByYear W42892058912022 @default.
- W4289205891 countsByYear W42892058912023 @default.
- W4289205891 crossrefType "journal-article" @default.
- W4289205891 hasAuthorship W4289205891A5016286750 @default.
- W4289205891 hasAuthorship W4289205891A5057937743 @default.
- W4289205891 hasAuthorship W4289205891A5062997304 @default.
- W4289205891 hasAuthorship W4289205891A5087333350 @default.
- W4289205891 hasAuthorship W4289205891A5087982601 @default.
- W4289205891 hasBestOaLocation W42892058911 @default.
- W4289205891 hasConcept C100970517 @default.
- W4289205891 hasConcept C111368507 @default.
- W4289205891 hasConcept C127313418 @default.
- W4289205891 hasConcept C127413603 @default.
- W4289205891 hasConcept C132651083 @default.
- W4289205891 hasConcept C134306372 @default.
- W4289205891 hasConcept C142724271 @default.
- W4289205891 hasConcept C146978453 @default.
- W4289205891 hasConcept C1549246 @default.
- W4289205891 hasConcept C19269812 @default.
- W4289205891 hasConcept C205649164 @default.
- W4289205891 hasConcept C2776133958 @default.
- W4289205891 hasConcept C2777007095 @default.
- W4289205891 hasConcept C2780030769 @default.
- W4289205891 hasConcept C33923547 @default.
- W4289205891 hasConcept C39432304 @default.
- W4289205891 hasConcept C62649853 @default.
- W4289205891 hasConcept C71924100 @default.
- W4289205891 hasConceptScore W4289205891C100970517 @default.
- W4289205891 hasConceptScore W4289205891C111368507 @default.
- W4289205891 hasConceptScore W4289205891C127313418 @default.
- W4289205891 hasConceptScore W4289205891C127413603 @default.
- W4289205891 hasConceptScore W4289205891C132651083 @default.
- W4289205891 hasConceptScore W4289205891C134306372 @default.
- W4289205891 hasConceptScore W4289205891C142724271 @default.
- W4289205891 hasConceptScore W4289205891C146978453 @default.
- W4289205891 hasConceptScore W4289205891C1549246 @default.
- W4289205891 hasConceptScore W4289205891C19269812 @default.
- W4289205891 hasConceptScore W4289205891C205649164 @default.
- W4289205891 hasConceptScore W4289205891C2776133958 @default.
- W4289205891 hasConceptScore W4289205891C2777007095 @default.
- W4289205891 hasConceptScore W4289205891C2780030769 @default.
- W4289205891 hasConceptScore W4289205891C33923547 @default.
- W4289205891 hasConceptScore W4289205891C39432304 @default.
- W4289205891 hasConceptScore W4289205891C62649853 @default.