Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289209204> ?p ?o ?g. }
- W4289209204 endingPage "11" @default.
- W4289209204 startingPage "1" @default.
- W4289209204 abstract "Wind turbines require suitable maintenance management operations. Supervisory control and data acquisition system is widely applied in the industry since large volumes of data are obtained, being necessary the application of advanced analysis techniques. The analysis of the alarms is a critical phase in the industry. This work proposes a novel approach to analyse the alarm activations. It combined statistical methods and deep learning algorithms to increase the reliability of the analysis. Initial data filtering, principal component analysis and correlations are applied to increase the reliability of the neural network. It proposed a case study formed by data from a real wind turbine, and the results demonstrate an increment in the reliability of the artificial neural network." @default.
- W4289209204 created "2022-08-01" @default.
- W4289209204 creator A5049735651 @default.
- W4289209204 creator A5059882924 @default.
- W4289209204 creator A5064725681 @default.
- W4289209204 date "2022-01-01" @default.
- W4289209204 modified "2023-09-25" @default.
- W4289209204 title "Wind Turbine Alarm Management with Artificial Neural Networks" @default.
- W4289209204 cites W1948629215 @default.
- W4289209204 cites W1999218375 @default.
- W4289209204 cites W2025343356 @default.
- W4289209204 cites W2060512336 @default.
- W4289209204 cites W2065454702 @default.
- W4289209204 cites W2120674393 @default.
- W4289209204 cites W2120871928 @default.
- W4289209204 cites W2139498473 @default.
- W4289209204 cites W2412298446 @default.
- W4289209204 cites W2544926015 @default.
- W4289209204 cites W2731323631 @default.
- W4289209204 cites W2740418370 @default.
- W4289209204 cites W2777380340 @default.
- W4289209204 cites W2793592543 @default.
- W4289209204 cites W2883867434 @default.
- W4289209204 cites W2903710299 @default.
- W4289209204 cites W2915097576 @default.
- W4289209204 cites W2935766809 @default.
- W4289209204 cites W2944477471 @default.
- W4289209204 cites W2955866086 @default.
- W4289209204 cites W2960049510 @default.
- W4289209204 cites W2962986775 @default.
- W4289209204 cites W2971162753 @default.
- W4289209204 cites W3000155135 @default.
- W4289209204 cites W3009591505 @default.
- W4289209204 cites W3035421035 @default.
- W4289209204 cites W3036498161 @default.
- W4289209204 cites W3040097943 @default.
- W4289209204 cites W3082191118 @default.
- W4289209204 cites W3088006442 @default.
- W4289209204 cites W3094458337 @default.
- W4289209204 cites W3119327461 @default.
- W4289209204 cites W3154933161 @default.
- W4289209204 doi "https://doi.org/10.1007/978-981-19-1012-8_1" @default.
- W4289209204 hasPublicationYear "2022" @default.
- W4289209204 type Work @default.
- W4289209204 citedByCount "0" @default.
- W4289209204 crossrefType "book-chapter" @default.
- W4289209204 hasAuthorship W4289209204A5049735651 @default.
- W4289209204 hasAuthorship W4289209204A5059882924 @default.
- W4289209204 hasAuthorship W4289209204A5064725681 @default.
- W4289209204 hasConcept C119599485 @default.
- W4289209204 hasConcept C119857082 @default.
- W4289209204 hasConcept C121332964 @default.
- W4289209204 hasConcept C127413603 @default.
- W4289209204 hasConcept C133731056 @default.
- W4289209204 hasConcept C146978453 @default.
- W4289209204 hasConcept C154945302 @default.
- W4289209204 hasConcept C163258240 @default.
- W4289209204 hasConcept C200601418 @default.
- W4289209204 hasConcept C27438332 @default.
- W4289209204 hasConcept C2778449969 @default.
- W4289209204 hasConcept C2779119184 @default.
- W4289209204 hasConcept C41008148 @default.
- W4289209204 hasConcept C43214815 @default.
- W4289209204 hasConcept C50644808 @default.
- W4289209204 hasConcept C62520636 @default.
- W4289209204 hasConcept C78519656 @default.
- W4289209204 hasConcept C78600449 @default.
- W4289209204 hasConceptScore W4289209204C119599485 @default.
- W4289209204 hasConceptScore W4289209204C119857082 @default.
- W4289209204 hasConceptScore W4289209204C121332964 @default.
- W4289209204 hasConceptScore W4289209204C127413603 @default.
- W4289209204 hasConceptScore W4289209204C133731056 @default.
- W4289209204 hasConceptScore W4289209204C146978453 @default.
- W4289209204 hasConceptScore W4289209204C154945302 @default.
- W4289209204 hasConceptScore W4289209204C163258240 @default.
- W4289209204 hasConceptScore W4289209204C200601418 @default.
- W4289209204 hasConceptScore W4289209204C27438332 @default.
- W4289209204 hasConceptScore W4289209204C2778449969 @default.
- W4289209204 hasConceptScore W4289209204C2779119184 @default.
- W4289209204 hasConceptScore W4289209204C41008148 @default.
- W4289209204 hasConceptScore W4289209204C43214815 @default.
- W4289209204 hasConceptScore W4289209204C50644808 @default.
- W4289209204 hasConceptScore W4289209204C62520636 @default.
- W4289209204 hasConceptScore W4289209204C78519656 @default.
- W4289209204 hasConceptScore W4289209204C78600449 @default.
- W4289209204 hasLocation W42892092041 @default.
- W4289209204 hasOpenAccess W4289209204 @default.
- W4289209204 hasPrimaryLocation W42892092041 @default.
- W4289209204 hasRelatedWork W1514850223 @default.
- W4289209204 hasRelatedWork W1569899005 @default.
- W4289209204 hasRelatedWork W2026357201 @default.
- W4289209204 hasRelatedWork W2052153694 @default.
- W4289209204 hasRelatedWork W206242967 @default.
- W4289209204 hasRelatedWork W2079987237 @default.
- W4289209204 hasRelatedWork W2232796787 @default.
- W4289209204 hasRelatedWork W4290997285 @default.
- W4289209204 hasRelatedWork W4297144133 @default.
- W4289209204 hasRelatedWork W4362496170 @default.