Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289209712> ?p ?o ?g. }
- W4289209712 endingPage "93" @default.
- W4289209712 startingPage "79" @default.
- W4289209712 abstract "Geometrical features like size and shape of the particles which are used to reinforce the composites affect the mechanical behavior of the resulting particulate polymer composites to a great extent. The aspect ratio of the reinforcing filler is of great importance specially when such composites are subjected to impact loading. Usually, an increase in the aspect ratio results in a significant increase in the energy-absorbing ability which ultimately improves the fracture toughness of the resulting composite. However, the experimental procedure followed for determining the fracture toughness of polymer composites reinforced with particles of varying aspect ratio is very complex and time-consuming. In this view, this chapter investigates the applicability of a machine learning algorithm known as K-nearest neighbor (KNN) for determining the dynamic fracture toughness of glass-filled polymer composites. The proposed methodology aims to predict the fracture toughness in terms of stress intensity factor with limited experimentation and maximum accuracy. The current framework of machine learning utilizes time, dynamic elastic modulus, aspect ratio, and volume fraction of the glass particles as the independent model parameters. The proposed KNN model predicts the fracture behavior of these composites with an accuracy of ~96%." @default.
- W4289209712 created "2022-08-01" @default.
- W4289209712 creator A5000117081 @default.
- W4289209712 creator A5034843355 @default.
- W4289209712 creator A5078763780 @default.
- W4289209712 date "2022-01-01" @default.
- W4289209712 modified "2023-10-17" @default.
- W4289209712 title "Dynamic Fracture Toughness Prediction of Fiber/Epoxy Composites Using K-Nearest Neighbor (KNN) Method" @default.
- W4289209712 cites W121811816 @default.
- W4289209712 cites W1541358243 @default.
- W4289209712 cites W1967996720 @default.
- W4289209712 cites W1978953849 @default.
- W4289209712 cites W1984047604 @default.
- W4289209712 cites W1985233460 @default.
- W4289209712 cites W1992998764 @default.
- W4289209712 cites W1999882552 @default.
- W4289209712 cites W2003922692 @default.
- W4289209712 cites W2005682201 @default.
- W4289209712 cites W2034632758 @default.
- W4289209712 cites W2034867669 @default.
- W4289209712 cites W2037696306 @default.
- W4289209712 cites W2043547186 @default.
- W4289209712 cites W2053173075 @default.
- W4289209712 cites W2065581761 @default.
- W4289209712 cites W2066059053 @default.
- W4289209712 cites W2066128637 @default.
- W4289209712 cites W2076699678 @default.
- W4289209712 cites W2079527169 @default.
- W4289209712 cites W2081003363 @default.
- W4289209712 cites W2086855826 @default.
- W4289209712 cites W2088692610 @default.
- W4289209712 cites W2092998534 @default.
- W4289209712 cites W2094192945 @default.
- W4289209712 cites W2121302072 @default.
- W4289209712 cites W2121703814 @default.
- W4289209712 cites W2135026194 @default.
- W4289209712 cites W2137663914 @default.
- W4289209712 cites W2154744349 @default.
- W4289209712 cites W2262229344 @default.
- W4289209712 cites W2344022952 @default.
- W4289209712 cites W2480051665 @default.
- W4289209712 cites W2496114304 @default.
- W4289209712 cites W2508027672 @default.
- W4289209712 cites W2574388714 @default.
- W4289209712 cites W2591503963 @default.
- W4289209712 cites W2606436201 @default.
- W4289209712 cites W2607281691 @default.
- W4289209712 cites W2609394459 @default.
- W4289209712 cites W2806288097 @default.
- W4289209712 cites W2901690329 @default.
- W4289209712 cites W2912052484 @default.
- W4289209712 cites W2922787593 @default.
- W4289209712 cites W2944759252 @default.
- W4289209712 cites W2946221058 @default.
- W4289209712 cites W2956152330 @default.
- W4289209712 cites W2965635245 @default.
- W4289209712 cites W2972486107 @default.
- W4289209712 cites W2976426597 @default.
- W4289209712 cites W2981219020 @default.
- W4289209712 cites W2990074700 @default.
- W4289209712 cites W2990184918 @default.
- W4289209712 cites W2996255091 @default.
- W4289209712 cites W3003462774 @default.
- W4289209712 cites W3010944152 @default.
- W4289209712 cites W3015043285 @default.
- W4289209712 cites W3040497190 @default.
- W4289209712 cites W3041664029 @default.
- W4289209712 cites W3043643967 @default.
- W4289209712 cites W3081536799 @default.
- W4289209712 cites W3087338291 @default.
- W4289209712 cites W3089239941 @default.
- W4289209712 cites W3091022083 @default.
- W4289209712 cites W3092343862 @default.
- W4289209712 cites W3093185107 @default.
- W4289209712 cites W3120595838 @default.
- W4289209712 cites W3121971582 @default.
- W4289209712 cites W3128779099 @default.
- W4289209712 cites W3129148192 @default.
- W4289209712 cites W3139547750 @default.
- W4289209712 cites W3201556490 @default.
- W4289209712 cites W4236951690 @default.
- W4289209712 cites W4246586469 @default.
- W4289209712 cites W4333786 @default.
- W4289209712 doi "https://doi.org/10.1007/978-981-19-3603-6_6" @default.
- W4289209712 hasPublicationYear "2022" @default.
- W4289209712 type Work @default.
- W4289209712 citedByCount "0" @default.
- W4289209712 crossrefType "book-chapter" @default.
- W4289209712 hasAuthorship W4289209712A5000117081 @default.
- W4289209712 hasAuthorship W4289209712A5034843355 @default.
- W4289209712 hasAuthorship W4289209712A5078763780 @default.
- W4289209712 hasConcept C104779481 @default.
- W4289209712 hasConcept C159985019 @default.
- W4289209712 hasConcept C166595027 @default.
- W4289209712 hasConcept C192562407 @default.
- W4289209712 hasConcept C43369102 @default.
- W4289209712 hasConcept C43486711 @default.
- W4289209712 hasConcept C521977710 @default.