Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289257105> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4289257105 endingPage "269" @default.
- W4289257105 startingPage "269" @default.
- W4289257105 abstract "In the automotive industry, cost estimation of components to be purchased plays an important role for price negotiations with suppliers and, therefore, for cost control within the supply chain. While traditional bottom-up cost estimation is a very time consuming and know-how intensive process, intelligent machine learning methods have the potential to significantly reduce the effort in the cost estimation process. In this paper, a literature review on intelligent cost estimation methods for parts to be procured in the manufacturing industry is carried out by text mining. Following the results of this literature review, building blocks for an intelligent cost estimation system are outlined that comprise cost estimation methods, dimensionality reduction methods, methods for multi-level cost estimation, and methods for interpreting the results of the cost analysis. Regarding cost estimation methods , Artificial Neural Networks and Support Vector Machines outperform established linear regression algorithms. Dimensionality reduction methods like Correlation Analysis or Principal Component Analysis are rarely studied . Nevertheless, they contribute a lot to the reduction of expensively provided input parameters for cost estimation. Methods for multi-level cost estimation, that support cost prediction of parts and assemblies following the construction plan of a vehicle, and methods for interpretation of intelligent cost analytics cannot be found at all in literature. Consequently, in this paper corresponding approaches are derived from the areas of Multitask Learning and Explainable Machine Learning. Finally, a combination of methods considered most suitable for predictive analytics to estimate procurement costs is presented." @default.
- W4289257105 created "2022-08-01" @default.
- W4289257105 date "1990-05-01" @default.
- W4289257105 modified "2023-09-23" @default.
- W4289257105 title "Linear programming and its applications" @default.
- W4289257105 doi "https://doi.org/10.1016/0377-2217(90)90145-2" @default.
- W4289257105 hasPublicationYear "1990" @default.
- W4289257105 type Work @default.
- W4289257105 citedByCount "0" @default.
- W4289257105 crossrefType "journal-article" @default.
- W4289257105 hasBestOaLocation W42892571052 @default.
- W4289257105 hasConcept C111919701 @default.
- W4289257105 hasConcept C119857082 @default.
- W4289257105 hasConcept C124101348 @default.
- W4289257105 hasConcept C127413603 @default.
- W4289257105 hasConcept C144133560 @default.
- W4289257105 hasConcept C154945302 @default.
- W4289257105 hasConcept C162324750 @default.
- W4289257105 hasConcept C162853370 @default.
- W4289257105 hasConcept C175444787 @default.
- W4289257105 hasConcept C182299520 @default.
- W4289257105 hasConcept C187736073 @default.
- W4289257105 hasConcept C201650216 @default.
- W4289257105 hasConcept C201995342 @default.
- W4289257105 hasConcept C27438332 @default.
- W4289257105 hasConcept C2778820799 @default.
- W4289257105 hasConcept C41008148 @default.
- W4289257105 hasConcept C50644808 @default.
- W4289257105 hasConcept C70518039 @default.
- W4289257105 hasConcept C83209312 @default.
- W4289257105 hasConcept C93983250 @default.
- W4289257105 hasConcept C95821633 @default.
- W4289257105 hasConcept C98045186 @default.
- W4289257105 hasConceptScore W4289257105C111919701 @default.
- W4289257105 hasConceptScore W4289257105C119857082 @default.
- W4289257105 hasConceptScore W4289257105C124101348 @default.
- W4289257105 hasConceptScore W4289257105C127413603 @default.
- W4289257105 hasConceptScore W4289257105C144133560 @default.
- W4289257105 hasConceptScore W4289257105C154945302 @default.
- W4289257105 hasConceptScore W4289257105C162324750 @default.
- W4289257105 hasConceptScore W4289257105C162853370 @default.
- W4289257105 hasConceptScore W4289257105C175444787 @default.
- W4289257105 hasConceptScore W4289257105C182299520 @default.
- W4289257105 hasConceptScore W4289257105C187736073 @default.
- W4289257105 hasConceptScore W4289257105C201650216 @default.
- W4289257105 hasConceptScore W4289257105C201995342 @default.
- W4289257105 hasConceptScore W4289257105C27438332 @default.
- W4289257105 hasConceptScore W4289257105C2778820799 @default.
- W4289257105 hasConceptScore W4289257105C41008148 @default.
- W4289257105 hasConceptScore W4289257105C50644808 @default.
- W4289257105 hasConceptScore W4289257105C70518039 @default.
- W4289257105 hasConceptScore W4289257105C83209312 @default.
- W4289257105 hasConceptScore W4289257105C93983250 @default.
- W4289257105 hasConceptScore W4289257105C95821633 @default.
- W4289257105 hasConceptScore W4289257105C98045186 @default.
- W4289257105 hasIssue "2" @default.
- W4289257105 hasLocation W42892571051 @default.
- W4289257105 hasLocation W42892571052 @default.
- W4289257105 hasOpenAccess W4289257105 @default.
- W4289257105 hasPrimaryLocation W42892571051 @default.
- W4289257105 hasRelatedWork W2149884537 @default.
- W4289257105 hasRelatedWork W2323935282 @default.
- W4289257105 hasRelatedWork W2336728627 @default.
- W4289257105 hasRelatedWork W2550788227 @default.
- W4289257105 hasRelatedWork W3022171515 @default.
- W4289257105 hasRelatedWork W3083754349 @default.
- W4289257105 hasRelatedWork W3110412417 @default.
- W4289257105 hasRelatedWork W3139904473 @default.
- W4289257105 hasRelatedWork W3187713758 @default.
- W4289257105 hasRelatedWork W2555788996 @default.
- W4289257105 hasVolume "46" @default.
- W4289257105 isParatext "false" @default.
- W4289257105 isRetracted "false" @default.
- W4289257105 workType "article" @default.