Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289260014> ?p ?o ?g. }
- W4289260014 endingPage "107850" @default.
- W4289260014 startingPage "107850" @default.
- W4289260014 abstract "Agricultural crop management requires extensive and comprehensive tools that allow for a full knowledge of the crops’ status and growth dynamic. This study aims at estimating crop yield for maize and tomato crops over large areas at field scale. For this purpose, we developed a fully coupled model based on a parameter-saving crop growth model (Simple Algorithm For Yield estimates (SAFY)) with a water-energy balance model (Flash–flood Event–based Spatially–distributed rainfall–runoff Transformation- Energy Water Balance model (FEST-EWB)) with a double exchange of leaf area index (LAI) and soil moisture (SM) information. Both models are driven by remote sensing data and are calibrated independently from in situ measurements . Satellite LAI data are used to calibrate the crop growth model parameters, while the energy-water balance parameters are calibrated against satellite land surface temperature (LST) data. Multiple satellite data are used either at high spatial resolution (Sentinel 2 and LANDSAT 7 and 8) and at low-resolution (MODIS). Two Italian case studies are selected to test the model accuracy: the Chiese Irrigation Consortium (Northern Italy), mainly devoted to maize crop cultivation, and the Capitanata Irrigation Consortium (Southern Italy), where tomatoes are largely diffused. At local scale, LAI is reproduced for tomatoes with a mean RMSE of 0.92 and yield with a RMSE of 1.2 ton ha −1 ; while for maize, a RMSE of 1 is found for LAI and a RMSE of 1.5 ton ha −1 for yield. Results show an overall correspondence of daily soil moisture and evapotranspiration estimates with a RMSE in between 0.11 and 0.15 and of 1.3–3 mm, respectively. At the regional scale, LAI estimates show a RMSE around 1.1 for both case studies, while a RMSE of 13.4 ton ha −1 is obtained for tomato yield and of 1.4 ton ha −1 for maize. • Fully coupled crop-water-energy model. • Crop yield estimates for maize and tomato crops. • Models driven by remote sensing data independently from in situ measurements. • Analyzes for large areas with the high detailed resolution of field scale." @default.
- W4289260014 created "2022-08-01" @default.
- W4289260014 creator A5004850054 @default.
- W4289260014 creator A5011325761 @default.
- W4289260014 creator A5021629776 @default.
- W4289260014 creator A5055143951 @default.
- W4289260014 creator A5074925447 @default.
- W4289260014 creator A5075812744 @default.
- W4289260014 creator A5081318945 @default.
- W4289260014 creator A5082160084 @default.
- W4289260014 date "2022-10-01" @default.
- W4289260014 modified "2023-10-14" @default.
- W4289260014 title "A fully coupled crop-water-energy balance model based on satellite data for maize and tomato crops yield estimates: The FEST-EWB-SAFY model" @default.
- W4289260014 cites W1890407888 @default.
- W4289260014 cites W1980320347 @default.
- W4289260014 cites W1984443733 @default.
- W4289260014 cites W1987592653 @default.
- W4289260014 cites W1992205567 @default.
- W4289260014 cites W1994975670 @default.
- W4289260014 cites W1996490168 @default.
- W4289260014 cites W1998256169 @default.
- W4289260014 cites W1999487499 @default.
- W4289260014 cites W2003299437 @default.
- W4289260014 cites W2014630223 @default.
- W4289260014 cites W2018318189 @default.
- W4289260014 cites W2036908963 @default.
- W4289260014 cites W2037499147 @default.
- W4289260014 cites W2041906034 @default.
- W4289260014 cites W2043950171 @default.
- W4289260014 cites W2052184973 @default.
- W4289260014 cites W2055408791 @default.
- W4289260014 cites W2057130962 @default.
- W4289260014 cites W2063612292 @default.
- W4289260014 cites W2064283057 @default.
- W4289260014 cites W2072981903 @default.
- W4289260014 cites W2073917898 @default.
- W4289260014 cites W2082462247 @default.
- W4289260014 cites W2084309260 @default.
- W4289260014 cites W2091601871 @default.
- W4289260014 cites W2109777280 @default.
- W4289260014 cites W2114621791 @default.
- W4289260014 cites W2115350623 @default.
- W4289260014 cites W2119572768 @default.
- W4289260014 cites W2153243519 @default.
- W4289260014 cites W2154700052 @default.
- W4289260014 cites W2155096269 @default.
- W4289260014 cites W2158883105 @default.
- W4289260014 cites W2160526577 @default.
- W4289260014 cites W2209425924 @default.
- W4289260014 cites W2346168539 @default.
- W4289260014 cites W2499691472 @default.
- W4289260014 cites W2557182234 @default.
- W4289260014 cites W2561941372 @default.
- W4289260014 cites W2616111214 @default.
- W4289260014 cites W2748461964 @default.
- W4289260014 cites W2773009449 @default.
- W4289260014 cites W2805837072 @default.
- W4289260014 cites W2891053507 @default.
- W4289260014 cites W2894129447 @default.
- W4289260014 cites W2943472941 @default.
- W4289260014 cites W2943654052 @default.
- W4289260014 cites W2966744467 @default.
- W4289260014 cites W2995556478 @default.
- W4289260014 cites W3000280057 @default.
- W4289260014 cites W3018875589 @default.
- W4289260014 cites W3020869288 @default.
- W4289260014 cites W3034321370 @default.
- W4289260014 cites W3111977974 @default.
- W4289260014 cites W3133710601 @default.
- W4289260014 cites W3144710566 @default.
- W4289260014 doi "https://doi.org/10.1016/j.agwat.2022.107850" @default.
- W4289260014 hasPublicationYear "2022" @default.
- W4289260014 type Work @default.
- W4289260014 citedByCount "0" @default.
- W4289260014 crossrefType "journal-article" @default.
- W4289260014 hasAuthorship W4289260014A5004850054 @default.
- W4289260014 hasAuthorship W4289260014A5011325761 @default.
- W4289260014 hasAuthorship W4289260014A5021629776 @default.
- W4289260014 hasAuthorship W4289260014A5055143951 @default.
- W4289260014 hasAuthorship W4289260014A5074925447 @default.
- W4289260014 hasAuthorship W4289260014A5075812744 @default.
- W4289260014 hasAuthorship W4289260014A5081318945 @default.
- W4289260014 hasAuthorship W4289260014A5082160084 @default.
- W4289260014 hasConcept C119049451 @default.
- W4289260014 hasConcept C121332964 @default.
- W4289260014 hasConcept C126343540 @default.
- W4289260014 hasConcept C127413603 @default.
- W4289260014 hasConcept C134121241 @default.
- W4289260014 hasConcept C137580998 @default.
- W4289260014 hasConcept C146978453 @default.
- W4289260014 hasConcept C168031717 @default.
- W4289260014 hasConcept C169760540 @default.
- W4289260014 hasConcept C187320778 @default.
- W4289260014 hasConcept C18903297 @default.
- W4289260014 hasConcept C19269812 @default.
- W4289260014 hasConcept C2777423268 @default.
- W4289260014 hasConcept C2993531722 @default.
- W4289260014 hasConcept C39432304 @default.