Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289260188> ?p ?o ?g. }
- W4289260188 endingPage "082003" @default.
- W4289260188 startingPage "082003" @default.
- W4289260188 abstract "Deep neural networks are rapidly emerging as data analysis tools, often outperforming the conventional techniques used in complex microfluidic systems. One fundamental analysis frequently desired in microfluidic experiments is counting and tracking the droplets. Specifically, droplet tracking in dense emulsions is challenging as droplets move in tightly packed configurations. Sometimes the individual droplets in these dense clusters are hard to resolve, even for a human observer. Here, two deep learning-based cutting-edge algorithms for object detection (YOLO) and object tracking (DeepSORT) are combined into a single image analysis tool, DropTrack, to track droplets in microfluidic experiments. DropTrack analyzes input videos, extracts droplets' trajectories, and infers other observables of interest, such as droplet numbers. Training an object detector network for droplet recognition with manually annotated images is a labor-intensive task and a persistent bottleneck. This work partly resolves this problem by training object detector networks (YOLOv5) with hybrid datasets containing real and synthetic images. We present an analysis of a double emulsion experiment as a case study to measure DropTrack's performance. For our test case, the YOLO networks trained with 60% synthetic images show similar performance in droplet counting as with the one trained using 100% real images, meanwhile saving the image annotation work by 60%. DropTrack's performance is measured in terms of mean average precision (mAP), mean square error in counting the droplets, and inference speed. The fastest configuration of DropTrack runs inference at about 30 frames per second, well within the standards for real-time image analysis." @default.
- W4289260188 created "2022-08-01" @default.
- W4289260188 creator A5011404275 @default.
- W4289260188 creator A5022850773 @default.
- W4289260188 creator A5024826612 @default.
- W4289260188 creator A5040389978 @default.
- W4289260188 creator A5045263376 @default.
- W4289260188 creator A5054613380 @default.
- W4289260188 creator A5075643472 @default.
- W4289260188 creator A5086032634 @default.
- W4289260188 date "2022-08-01" @default.
- W4289260188 modified "2023-10-02" @default.
- W4289260188 title "DropTrack—Automatic droplet tracking with YOLOv5 and DeepSORT for microfluidic applications" @default.
- W4289260188 cites W1982933896 @default.
- W4289260188 cites W2003912896 @default.
- W4289260188 cites W2090690176 @default.
- W4289260188 cites W2105934661 @default.
- W4289260188 cites W2106509289 @default.
- W4289260188 cites W2152776253 @default.
- W4289260188 cites W2168681026 @default.
- W4289260188 cites W2222512263 @default.
- W4289260188 cites W2514087538 @default.
- W4289260188 cites W2548144690 @default.
- W4289260188 cites W2555335304 @default.
- W4289260188 cites W2593841121 @default.
- W4289260188 cites W2919115771 @default.
- W4289260188 cites W2923537029 @default.
- W4289260188 cites W2936901535 @default.
- W4289260188 cites W2947371353 @default.
- W4289260188 cites W2948230027 @default.
- W4289260188 cites W2964236337 @default.
- W4289260188 cites W2991115641 @default.
- W4289260188 cites W2999044305 @default.
- W4289260188 cites W3003555818 @default.
- W4289260188 cites W3005641041 @default.
- W4289260188 cites W3010839048 @default.
- W4289260188 cites W3035558131 @default.
- W4289260188 cites W3091986675 @default.
- W4289260188 cites W3102140816 @default.
- W4289260188 cites W3105354154 @default.
- W4289260188 cites W3125470299 @default.
- W4289260188 cites W3132971810 @default.
- W4289260188 cites W3133611053 @default.
- W4289260188 cites W3159070917 @default.
- W4289260188 cites W3161200675 @default.
- W4289260188 cites W3177366646 @default.
- W4289260188 cites W3183126223 @default.
- W4289260188 cites W3185371334 @default.
- W4289260188 cites W3185743663 @default.
- W4289260188 cites W3195756767 @default.
- W4289260188 cites W3196897419 @default.
- W4289260188 cites W3199269661 @default.
- W4289260188 cites W3202248822 @default.
- W4289260188 cites W3204715535 @default.
- W4289260188 cites W3209295695 @default.
- W4289260188 cites W3216544510 @default.
- W4289260188 cites W4210713511 @default.
- W4289260188 cites W4220901916 @default.
- W4289260188 cites W4226103191 @default.
- W4289260188 cites W4254345639 @default.
- W4289260188 doi "https://doi.org/10.1063/5.0097597" @default.
- W4289260188 hasPublicationYear "2022" @default.
- W4289260188 type Work @default.
- W4289260188 citedByCount "7" @default.
- W4289260188 countsByYear W42892601882022 @default.
- W4289260188 countsByYear W42892601882023 @default.
- W4289260188 crossrefType "journal-article" @default.
- W4289260188 hasAuthorship W4289260188A5011404275 @default.
- W4289260188 hasAuthorship W4289260188A5022850773 @default.
- W4289260188 hasAuthorship W4289260188A5024826612 @default.
- W4289260188 hasAuthorship W4289260188A5040389978 @default.
- W4289260188 hasAuthorship W4289260188A5045263376 @default.
- W4289260188 hasAuthorship W4289260188A5054613380 @default.
- W4289260188 hasAuthorship W4289260188A5075643472 @default.
- W4289260188 hasAuthorship W4289260188A5086032634 @default.
- W4289260188 hasBestOaLocation W42892601882 @default.
- W4289260188 hasConcept C108583219 @default.
- W4289260188 hasConcept C120665830 @default.
- W4289260188 hasConcept C121332964 @default.
- W4289260188 hasConcept C149635348 @default.
- W4289260188 hasConcept C153180895 @default.
- W4289260188 hasConcept C154945302 @default.
- W4289260188 hasConcept C15744967 @default.
- W4289260188 hasConcept C160633673 @default.
- W4289260188 hasConcept C19417346 @default.
- W4289260188 hasConcept C2775936607 @default.
- W4289260188 hasConcept C2776151529 @default.
- W4289260188 hasConcept C2780513914 @default.
- W4289260188 hasConcept C31972630 @default.
- W4289260188 hasConcept C32653426 @default.
- W4289260188 hasConcept C41008148 @default.
- W4289260188 hasConcept C8673954 @default.
- W4289260188 hasConcept C94915269 @default.
- W4289260188 hasConcept C97355855 @default.
- W4289260188 hasConceptScore W4289260188C108583219 @default.
- W4289260188 hasConceptScore W4289260188C120665830 @default.
- W4289260188 hasConceptScore W4289260188C121332964 @default.
- W4289260188 hasConceptScore W4289260188C149635348 @default.