Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289261342> ?p ?o ?g. }
- W4289261342 endingPage "13087" @default.
- W4289261342 startingPage "13069" @default.
- W4289261342 abstract "Here, we report the photoelectron-induced excitation (PEIE) spectroscopy and its close correlation with fundamental studies of catalysis. In the PEIE spectroscopy, a spectrum is formed through scattering free molecules of the on-site gas phase proximal to a catalyst surface by an electron source generated from the catalyst surface. The electron source is these photoelectrons with a specific kinetic energy (KE) released from the catalyst surface such as Pt 4f7/2 from a Pt catalyst or C 1s photoelectrons from graphite. Pt, Au, Ag, and graphite were used as catalysts in this work; CO, O2, N2, or their mixtures were used as a pure gas or gaseous mixtures around a catalyst surface. A constituting peak in a PEIE spectrum is contributed by photoelectrons that lose a certain amount of KE (ΔE) after scattering free molecules of the on-site gas phase proximal to the catalyst surface in the space of zero to submillimeters. By measuring the kinetic energies KEf of these photoelectrons after scattering with gaseous molecules, ΔE are identified. As ΔE is the energy used for exciting free molecules from their ground state to a specific excitation state, the identification of ΔE of these peaks of a PEIE spectrum allows us to build the energy diagram of molecular orbitals of the on-site gas phase proximal to the catalyst surface. With the composed energy diagram of a molecule, the molecular identity of the gas can be obtained by comparing it to references. The PEIE spectroscopy allows for observing both occupied and unoccupied molecular orbitals of molecules in a gas phase. Intensity of the PEIE spectrum is proportional to intensity of electron source in terms of photoelectrons and density of molecules in gas phase. As the intensity of a PEIE spectrum of a gas is proportional to molecular density of gas in terms of this partial pressure of the on-site gas proximal to the catalyst surface, PEIE spectroscopy can be used to measure the gas pressure and analyze the composition of an on-site gas mixture proximal to a catalyst surface. It is expected that PEIE spectroscopy is particularly valuable for high-temperature catalysis because the identity of constituting gases and composition of an on-site high-temperature gas phase proximal to the high-temperature catalyst surface during catalysis can be different from those of an off-site gas phase characterized at a low temperature or room temperature. In addition, it is expected that it can identify radical species formed in the on-site gas phase around the catalyst surface at high temperature. Because the parent peak(s) of a PEIE extended spectrum represent the surface chemistry of the catalyst and the PEIE difference spectrum provides information on molecular identity and partial pressure of constituting gases of the on-site gas proximal to a working catalyst surface, the integration of PEIE spectroscopy with ambient pressure X-ray photoelectron spectroscopy offers a significant function of both characterizing a catalyst surface and simultaneously measuring the on-site catalytic performance of the catalyst in terms of on-site turn-over rate (TOR) during catalysis for gaining a fundamental understanding of a catalytic reaction with a real-time manner of spatial proximity and temporal simultaneity." @default.
- W4289261342 created "2022-08-01" @default.
- W4289261342 creator A5004494343 @default.
- W4289261342 creator A5020065136 @default.
- W4289261342 creator A5074200142 @default.
- W4289261342 date "2022-08-01" @default.
- W4289261342 modified "2023-10-11" @default.
- W4289261342 title "Report on Photoelectron-Induced Excitation Spectroscopy and Its Close Correlation with Fundamental Studies of Catalysis" @default.
- W4289261342 cites W1504362703 @default.
- W4289261342 cites W1523488265 @default.
- W4289261342 cites W1792830497 @default.
- W4289261342 cites W1971956982 @default.
- W4289261342 cites W1979537526 @default.
- W4289261342 cites W1981410988 @default.
- W4289261342 cites W2013649996 @default.
- W4289261342 cites W2014348627 @default.
- W4289261342 cites W2016151345 @default.
- W4289261342 cites W2028637525 @default.
- W4289261342 cites W2034445005 @default.
- W4289261342 cites W2038775832 @default.
- W4289261342 cites W2045329900 @default.
- W4289261342 cites W2046002177 @default.
- W4289261342 cites W2046680532 @default.
- W4289261342 cites W2060116396 @default.
- W4289261342 cites W2060363249 @default.
- W4289261342 cites W2064465250 @default.
- W4289261342 cites W2068375544 @default.
- W4289261342 cites W2072076660 @default.
- W4289261342 cites W2072249478 @default.
- W4289261342 cites W2083973832 @default.
- W4289261342 cites W2085328372 @default.
- W4289261342 cites W2092486070 @default.
- W4289261342 cites W2121149822 @default.
- W4289261342 cites W2123517036 @default.
- W4289261342 cites W2128468022 @default.
- W4289261342 cites W2139840342 @default.
- W4289261342 cites W2140407993 @default.
- W4289261342 cites W2145513690 @default.
- W4289261342 cites W2150950121 @default.
- W4289261342 cites W2157244623 @default.
- W4289261342 cites W2159816748 @default.
- W4289261342 cites W2162059913 @default.
- W4289261342 cites W2169947006 @default.
- W4289261342 cites W2254770136 @default.
- W4289261342 cites W2299336055 @default.
- W4289261342 cites W2409570335 @default.
- W4289261342 cites W2418682553 @default.
- W4289261342 cites W2523873427 @default.
- W4289261342 cites W2718905667 @default.
- W4289261342 cites W2786770746 @default.
- W4289261342 cites W2942371531 @default.
- W4289261342 cites W2948583960 @default.
- W4289261342 cites W4232760999 @default.
- W4289261342 doi "https://doi.org/10.1021/acs.jpcc.2c00209" @default.
- W4289261342 hasPublicationYear "2022" @default.
- W4289261342 type Work @default.
- W4289261342 citedByCount "5" @default.
- W4289261342 countsByYear W42892613422023 @default.
- W4289261342 crossrefType "journal-article" @default.
- W4289261342 hasAuthorship W4289261342A5004494343 @default.
- W4289261342 hasAuthorship W4289261342A5020065136 @default.
- W4289261342 hasAuthorship W4289261342A5074200142 @default.
- W4289261342 hasConcept C121332964 @default.
- W4289261342 hasConcept C147120987 @default.
- W4289261342 hasConcept C175708663 @default.
- W4289261342 hasConcept C184779094 @default.
- W4289261342 hasConcept C185592680 @default.
- W4289261342 hasConcept C189394030 @default.
- W4289261342 hasConcept C192562407 @default.
- W4289261342 hasConcept C32891209 @default.
- W4289261342 hasConcept C46141821 @default.
- W4289261342 hasConcept C49040817 @default.
- W4289261342 hasConcept C62520636 @default.
- W4289261342 hasConcept C71570822 @default.
- W4289261342 hasConceptScore W4289261342C121332964 @default.
- W4289261342 hasConceptScore W4289261342C147120987 @default.
- W4289261342 hasConceptScore W4289261342C175708663 @default.
- W4289261342 hasConceptScore W4289261342C184779094 @default.
- W4289261342 hasConceptScore W4289261342C185592680 @default.
- W4289261342 hasConceptScore W4289261342C189394030 @default.
- W4289261342 hasConceptScore W4289261342C192562407 @default.
- W4289261342 hasConceptScore W4289261342C32891209 @default.
- W4289261342 hasConceptScore W4289261342C46141821 @default.
- W4289261342 hasConceptScore W4289261342C49040817 @default.
- W4289261342 hasConceptScore W4289261342C62520636 @default.
- W4289261342 hasConceptScore W4289261342C71570822 @default.
- W4289261342 hasFunder F4320337393 @default.
- W4289261342 hasFunder F4320337480 @default.
- W4289261342 hasIssue "31" @default.
- W4289261342 hasLocation W42892613421 @default.
- W4289261342 hasOpenAccess W4289261342 @default.
- W4289261342 hasPrimaryLocation W42892613421 @default.
- W4289261342 hasRelatedWork W1563898689 @default.
- W4289261342 hasRelatedWork W2000344605 @default.
- W4289261342 hasRelatedWork W2015304907 @default.
- W4289261342 hasRelatedWork W2130272182 @default.
- W4289261342 hasRelatedWork W2154455733 @default.
- W4289261342 hasRelatedWork W2177706619 @default.