Matches in SemOpenAlex for { <https://semopenalex.org/work/W4289277718> ?p ?o ?g. }
- W4289277718 endingPage "34" @default.
- W4289277718 startingPage "28" @default.
- W4289277718 abstract "Patients receiving medication for opioid use disorder (MOUD) may continue using nonprescribed drugs or have trouble with medication adherence, and it is difficult to predict which patients will continue to do so. In this study, we develop and validate an automated risk-modeling framework to predict opioid abstinence and medication adherence at a patient's next attended appointment and evaluate the predictive performance of machine-learning algorithms versus logistic regression.Urine drug screen and attendance records from 40,005 appointments drawn from 2742 patients at a multilocation office-based MOUD program were used to train logistic regression, logistic ridge regression, and XGBoost models to predict a composite indicator of treatment adherence (opioid-negative and norbuprenorphine-positive urine, no evidence of urine adulteration) at next attended appointment.The XGBoost model had similar accuracy and discriminative ability (accuracy, 88%; area under the receiver operating curve, 0.87) to the two logistic regression models (accuracy, 88%; area under the receiver operating curve, 0.87). The XGBoost model had nearly perfect calibration in independent validation data; the logistic and ridge regression models slightly overestimated adherence likelihood. Historical treatment adherence, attendance rate, and fentanyl-positive urine at current appointment were the strongest contributors to treatment adherence at next attended appointment.There is a need for risk prediction tools to improve delivery of MOUD. This study presents an automated and portable risk-modeling framework to predict treatment adherence at each patient's next attended appointment. The XGBoost algorithm appears to provide similar classification accuracy to logistic regression models; however, XGBoost may offer improved calibration of risk estimates compared with logistic regression." @default.
- W4289277718 created "2022-08-01" @default.
- W4289277718 creator A5040672500 @default.
- W4289277718 creator A5041474879 @default.
- W4289277718 creator A5043722260 @default.
- W4289277718 creator A5064955370 @default.
- W4289277718 creator A5066934406 @default.
- W4289277718 date "2022-08-02" @default.
- W4289277718 modified "2023-09-30" @default.
- W4289277718 title "Using Machine Learning to Predict Treatment Adherence in Patients on Medication for Opioid Use Disorder" @default.
- W4289277718 cites W1659527729 @default.
- W4289277718 cites W1976503420 @default.
- W4289277718 cites W1979457019 @default.
- W4289277718 cites W1994898940 @default.
- W4289277718 cites W2036154210 @default.
- W4289277718 cites W2039166465 @default.
- W4289277718 cites W2049796721 @default.
- W4289277718 cites W2127569342 @default.
- W4289277718 cites W2130920568 @default.
- W4289277718 cites W2132566701 @default.
- W4289277718 cites W2152088367 @default.
- W4289277718 cites W2606184753 @default.
- W4289277718 cites W2613384516 @default.
- W4289277718 cites W2745653814 @default.
- W4289277718 cites W2764017137 @default.
- W4289277718 cites W2778179547 @default.
- W4289277718 cites W2809380555 @default.
- W4289277718 cites W2887770017 @default.
- W4289277718 cites W2889861957 @default.
- W4289277718 cites W2897821861 @default.
- W4289277718 cites W2909411034 @default.
- W4289277718 cites W2924338030 @default.
- W4289277718 cites W2996480032 @default.
- W4289277718 cites W3003736707 @default.
- W4289277718 cites W3009908488 @default.
- W4289277718 cites W3011899049 @default.
- W4289277718 cites W3042329961 @default.
- W4289277718 cites W3089669684 @default.
- W4289277718 cites W3135083987 @default.
- W4289277718 cites W3163978087 @default.
- W4289277718 cites W3200924721 @default.
- W4289277718 cites W4237406546 @default.
- W4289277718 doi "https://doi.org/10.1097/adm.0000000000001019" @default.
- W4289277718 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35914118" @default.
- W4289277718 hasPublicationYear "2022" @default.
- W4289277718 type Work @default.
- W4289277718 citedByCount "1" @default.
- W4289277718 countsByYear W42892777182022 @default.
- W4289277718 crossrefType "journal-article" @default.
- W4289277718 hasAuthorship W4289277718A5040672500 @default.
- W4289277718 hasAuthorship W4289277718A5041474879 @default.
- W4289277718 hasAuthorship W4289277718A5043722260 @default.
- W4289277718 hasAuthorship W4289277718A5064955370 @default.
- W4289277718 hasAuthorship W4289277718A5066934406 @default.
- W4289277718 hasConcept C119857082 @default.
- W4289277718 hasConcept C126322002 @default.
- W4289277718 hasConcept C151956035 @default.
- W4289277718 hasConcept C154945302 @default.
- W4289277718 hasConcept C162324750 @default.
- W4289277718 hasConcept C169258074 @default.
- W4289277718 hasConcept C170493617 @default.
- W4289277718 hasConcept C194828623 @default.
- W4289277718 hasConcept C2778173179 @default.
- W4289277718 hasConcept C2779418921 @default.
- W4289277718 hasConcept C2781063702 @default.
- W4289277718 hasConcept C41008148 @default.
- W4289277718 hasConcept C50522688 @default.
- W4289277718 hasConcept C58471807 @default.
- W4289277718 hasConcept C71924100 @default.
- W4289277718 hasConceptScore W4289277718C119857082 @default.
- W4289277718 hasConceptScore W4289277718C126322002 @default.
- W4289277718 hasConceptScore W4289277718C151956035 @default.
- W4289277718 hasConceptScore W4289277718C154945302 @default.
- W4289277718 hasConceptScore W4289277718C162324750 @default.
- W4289277718 hasConceptScore W4289277718C169258074 @default.
- W4289277718 hasConceptScore W4289277718C170493617 @default.
- W4289277718 hasConceptScore W4289277718C194828623 @default.
- W4289277718 hasConceptScore W4289277718C2778173179 @default.
- W4289277718 hasConceptScore W4289277718C2779418921 @default.
- W4289277718 hasConceptScore W4289277718C2781063702 @default.
- W4289277718 hasConceptScore W4289277718C41008148 @default.
- W4289277718 hasConceptScore W4289277718C50522688 @default.
- W4289277718 hasConceptScore W4289277718C58471807 @default.
- W4289277718 hasConceptScore W4289277718C71924100 @default.
- W4289277718 hasIssue "1" @default.
- W4289277718 hasLocation W42892777181 @default.
- W4289277718 hasLocation W42892777182 @default.
- W4289277718 hasOpenAccess W4289277718 @default.
- W4289277718 hasPrimaryLocation W42892777181 @default.
- W4289277718 hasRelatedWork W2911455822 @default.
- W4289277718 hasRelatedWork W3174196512 @default.
- W4289277718 hasRelatedWork W3198710639 @default.
- W4289277718 hasRelatedWork W4212963941 @default.
- W4289277718 hasRelatedWork W4239706975 @default.
- W4289277718 hasRelatedWork W4283313480 @default.
- W4289277718 hasRelatedWork W4285237370 @default.
- W4289277718 hasRelatedWork W4308191010 @default.
- W4289277718 hasRelatedWork W4321636153 @default.